首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The gas and dispersed phase holdups and mass transfer coefficients of liquid-iquid were determined for gas-liquid-liquid three phase system in a screen plate column. The flow pattern of gas-liquid-liquid three phase system was studied under different gas velocities. The shape factors showed the geometric properties of screen plates and the corrected drop chaxacteristic velocities were introduced. The phase holdup in two phases was correlated.The research results indicated that mass transfer coefficient for liquid-liquid system in a column with screen plates and gas agitation was found to increase apparently.  相似文献   

2.
The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR) including the gas holdup, volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature, p H and superficial gas velocity. The reactor diameter and height were 11 and 30 cm,respectively. It was equipped with a single sparger, operating at atmospheric pressure, 20 and 40℃, and two p H values of 3 and 6. The height of the liquid was 23 cm, while the superficial gas velocity changed within 0.010–0.040 m·s~(-1) range. Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase. The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution. The gas holdup was calculated based on the liquid height change, while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD) in different superficial gas velocities. The results indicated that at the same temperature but different p H, the gas holdup variation was negligible, while the liquid-side volumetric mass transfer coefficient at the p H value of 6 was higher than that at the p H = 3. At a constant p H but different temperatures, the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃ were higher than that of the same at 20℃. A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla) in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.  相似文献   

3.
This study reports an experimental investigation on hydrodynamics and mass transfer characteristics in a 15.6x10-3 m3 external loop airlift reactor for oil-in-water micro-emulsions with oil to water volume ratio (φ) rang- ing from 3% to 7% (by volume). For comparative purposes, experiments were also carried out with water. Increase in φ of micro-emulsion systems results in an increment in the gas holdup and a decrease in the volumetric gas-liquid oxygen transfer coefficient and liquid circulation velocity, attributed to the escalation in the viscosity of mi- cro-emulsions. The gas holdup and volumetric mass transfer coefficient for micro-emulsion systems are signifi- cantly higher than that of water system. Two correlations are developed to predict the gas holdup and oxygen trans- fer coefficient  相似文献   

4.
In an internal loop airlift reactor of 55L working volume,the gas-liquid volumetric oxygenmass transfer coefficient k_Lα,gas holdup ε_G and liquid circulation time t_c were measured with the sol-ution of carboxymethyl cellulose(CMC)to simulate the performance of a reactor with highly viscousbroth.Electric conductivity and oxygen probes were used to measure the local gas holdup,liquidcirculation time and oxygen mass transfer coefficient in the individual sections of the reactor(riser,downcomer and the gas-liquid separating section at the top of the reactor)and the total reactor,respectively.The values of k_Lα for the riser,downcomer and separation sections of the reactor were alsoestimated and compared with that for the total reactor.The results show that,both k_Lα and ε_G in-crease but t_c decreases with increasing gas velocity.Correlations and comparisons with works reportedin the literature are also presented.Data show that the methods developed for k_Lα measurements inthe individual section and  相似文献   

5.
The external loop airlift reactor(EL-ALR) is widely used for gas-liquid reactions. It's advantage of good heat and mass transfer rates compared to conventional bubble column reactors. In the case of fermentation application where a medium is highly viscous and coalescing in nature, internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquid-phase back mixing. The computational fluid dynamic(CFD) as a tool is used to design and scale-up of sectionalized external loop airlift reactor. The present work deals with computational fluid dynamics(CFD) techniques and experimental measurement of a gas hold-up, liquid circulation velocity, liquid axial velocity, Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤U_G≤0.0168 m·s~(-1). The correlation has been made for bubble size distribution with specific power consumption for different plate configurations. The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional EL-ALR.  相似文献   

6.
Alkylphenols(APs), considered as xenoestrogenic compounds, mainly exist as 4-nonylphenol(4-NP) and 4-tertoctylphenol(4-t-OP) in environments. The high stability and accumulation of APs in aquatic systems have caused endocrine disruption. In this study we measured APs in the wastewater influent and effluent samples, from the urban, rural, livestock, commercial and hospital wastewater treatment plants(WWTPs) in Iran. Dispersive liquid–liquid microextraction(DLLME) combined with gas chromatography–mass spectrometry(GC–MS) was used for the extraction and determination of 4-NP and 4-t-OP. In these treatment plants, various processes such as activated sludge, aerated lagoon, moving bed biofilm reactor and activated sludge along with wetland were applied. The highest concentration of 4-NP and 4-t-OP was observed in commercial and livestock sewages. The activated sludge along with wetland and then the MBBR process showed the highest removal rates of pollutants. The rates of biodegradability and accumulation in sludge were determined and also the specific adsorption coefficient Kdand the organic carbon–water partition coefficient kOCof the sludge for APs were calculated.  相似文献   

7.
Acylation of 2-methylnaphthalene(2-MN) is a very important reaction in organic synthesis,and the effiency of the continuous reactor is more than one of the batch reactor.Considering that the Friedel–Crafts acylation is a rapid exothermic reaction,in this study,we perform the acylation of 2-MN in a stainless steel microchannel flow reactor,which is characterized by high mass and heat transfer rates.The effect of reactant ratio,mixing temperature,reaction temperature,and reaction time on product yield and selectivity were investigated.Under the optimal conditions,2-methyl-6-propionylnaphthalene(2,6-MPN) was obtained in 85.8% yield with 87.5% selectivity.Compared with the conventional batch system,the continuous flow microchannel reactor provides a more efficient method for the synthesis of 2,6-MPN.  相似文献   

8.
The pressure profiles, gas velocities, solid circulation rate, solids flux, residence time distribution of gas and particles in chemical-looping combustion reactors and gas leakage were studied in a cold flow model unit. And these parameters in both air and fuel reactors were measured in the experimental stage. The experimental results show that gas fluidization velocity in the air reactor is 1.8 m/s, gas fluidization velocity in the fuel reactor 0.5 m/s, and the bed materials inventory of the two reactors between 1.2 to 3.15 kg. The first cold flow model results show that the solid circulation rates are sufficient. The appropriate operating conditions are optimized and the summary of final changes is made the on cold model. The proposed design solutions are currently being verified in a cold flow model simulating the actual reactor (hot) system. This paper presents an overview of the research performed on a cold flow model and highlights the current status of the technology.  相似文献   

9.
The hysteresis of gas-liquid mass transfer rate and the corresponding radial liquiddistribution in a trickle bed reactor are measured to provide evidence for the correlation between thesetwo behaviors.Experimental results indicate that the hysteresis of gas-liquid mass transfer originatesfrom the nonuniformity of the hydrodynamic state of gas-liquid flow and the radial maldistributionof local k_(gia) corresponds very well to the radial maldistribution of liquid flow in the bed.The localliquid flow rate is also found to be nonuniform in the azimuthal direction.In view of maldistributedliquid flow even in the pulsing flow regime,the conventional plug flow model seems oversimplifiedfor describing the behavior of a trickle bed.  相似文献   

10.
The objective of this study was to establish the thermal characteristics of the lauric acid (95% purity) as a latent heat storage material filled in the annulus of vertical concentric double pipe during its melting process. The temperature data were used to determine the thermal characteristics, including the temporal temperature variations and the effects of the mass flow rate and the inlet temperature of the heat transfer fluid on the heat transfer coefficient and the heat charging fraction during the melting process. The results indicated that the time to reach to heat charging fraction of 1.0 could be altered by changing the mass flow rate and the inlet temperature of the heat transfer fluid.  相似文献   

11.
Experiments were conducted in a modified reversed flow jet loop reactor having the liquid outlet at the top of the reactor to determine the gas holdup and overall volumetric mass transfer coefficient in the air-water system. The influence of gas and liquid flow rates, and the draft tube to reactor diameter ratio were studied. It was observed that both gas holdup and volumetric mass transfer coefficient increased with increased gas and liquid flow rates and were found to be significantly higher in the modified reactor compared to the conventional one. The optimum draft tube to reactor diameter ratio was found to be in the range of 0.4 to 0.5. Empirical correlations are presented to predict gas holdup and overall volumetric mass transfer coefficient in terms of operational and geometrical variables.  相似文献   

12.
李友凤  叶红齐  周虎  何显达 《化学工程》2012,40(3):48-52,66
在T型对撞反应器的基础上,对其结构进行改进,设计了旋流锥型对撞、T型旋撞和旋流锥型旋撞(二次旋转)3种撞击流反应器。用化学吸收法测量了这几种不同结构的微反应器在气液二相逆流接触条件下平均相界比表面积α及液相吸收传质系数kL;进而分析了反应器进口结构、尺寸和流体流量等条件对传质性能的影响。结果表明:旋撞比直撞的传质系数大,二次旋撞的比一次旋撞的传质系数要大;撞击区进口尺寸越小,气液流体的流量越大,反应器的传质系数越大;液相传质系数较常规气液接触设备的至少高1—2个数量级,其传质强化的原因主要源于微反应器内相界比表面积大幅度地增加。  相似文献   

13.
张杰  王志伟 《净水技术》2007,26(6):41-45
研究了浸没式膜-生物反应器中污泥浓度与膜面错流速度以及传氧速率之间的关系。结果表明,污泥浓度的提高使传氧速率系数下降,当污泥浓度从4.5g/L变化至21.5g/L,传氧速率系数从0.565降低至0.155。根据气液反应器理论进行传质分析表明,传氧速率系数的降低主要是由于污泥浓度增大引起了混合液粘度增大所致。同时污泥浓度的上升会导致膜面错流速度的降低,不利于控制膜污染。  相似文献   

14.
Five different types of three-phase reactors are compared with each other by using oxidation of sulfur dioxide on activated carbon. The kinetic measurements were carried out by changing concentrations of sulfur dioxide from 0.04 to 0.17% (volume) and those of oxygen from 2 to 21%. The reaction rate was 0.2 order with respect to sulfur dioxide and 0.5 order with respect to oxygen. The catalytic effectiveness factor and intraparticle diffusivity were evaluated by changing particle sizes of activated carbon from 0.03 to 1.6 mm. Resistances of gas-liquid, liquid-solid mass transfer and intraparticle diffusion were estimated for individual reactors. The optimum reactor was dependent on operating conditions such as gas flow rates, rotating speeds and particle sizes.  相似文献   

15.
王成龙  张金利  张敏卿 《化工进展》2018,37(11):4150-4161
氧传质系数是气液搅拌反应器设计的关键参数,研究新型搅拌桨的氧传质性能对气液两相搅拌反应器的强化有着重要的意义。本文实验研究了气体分布器、搅拌转速、气量对氧传质系数、搅拌功耗及气含率的影响,结果表明,氧传质系数随搅拌转速和气量的增加而增加;并建立了氧传质系数与搅拌功耗和表观气速的经验公式,为进一步放大应用提供了基础。采用欧拉-欧拉多相流模型及群体平衡模型对半弧面新型斜叶桨进行了计算流体力学(CFD)数值模拟研究,模拟研究了不同结构、搅拌转速、气量下的流体力学性能和氧传质系数,模拟计算结果与实验值的相对偏差在20%以内;这为研究这一半弧面新型斜叶桨提供了一种可靠的数值模拟方法;优化了半弧面新型斜叶桨的结构,提高了搅拌釜的氧传质效率。  相似文献   

16.
1 INTRODUCTION Airlift loop reactors have emerged as one of the most promising devices in chemical, biochemical and environmental engineering operations. Its main ad-vantages over conventional reactors include excellent contact among different phases, ease of removal or replenishment of particles, and high heat and mass transfer rates[1]. High gas-liquid contacting area and favorable flow pattern are the attractive features of this type of three-phase contactors. Typical processes that ca…  相似文献   

17.
The complex flow patterns induced in fluidized bed catalytic reactors and the competing parameters affecting the mass and heat transfer characteristics make the design of such reactors a challenging task to accomplish. The models of such processes rely heavily on predictive empirical correlations for the mass and heat transfer coefficients. Unfortunately, published empirical-based correlations have the common shortcoming of low prediction efficiency compared with experimental data. In this work, an artificial neural network approach is used to capture the reactor characteristics in terms of heat and mass transfer based on published experimental data. The developed ANN-based heat and mass transfer coefficients relations were used in a conventional FCR model and simulated under industrial operating conditions. The hybrid model predictions of the melt-flow index and the emulsion temperature were compared to industrial measurements as well as published models. The predictive quality of the hybrid model was superior to other models. This modeling approach can be used as an alternative to conventional modeling methods.  相似文献   

18.
Dynamics and oxygen transfer of a novel vertical tubular biological reactor (VTBR) for wastewater treatment were investigated in this paper. It was showed that the dissolved oxygen concentration (DO) in VTBR is higher than that in the conventional bubble column. When the ratio of gas and liquid flow rates was greater than 6.44, there were no phenomena of deficiency oxygen in all reactors. The volume oxygen transfer coefficient (kLa) was between 0.005 and 0.025 1/s. The multi-stage series CSTR and PFR model were developed to describe the dynamics of VTBR. It was revealed that the PFR model was proper to describe the dynamics of VTBR of which maximum error was only 25%. The industrial effluents from Dalian Bangchui Island Beer Company were utilized to verify the two models. It was suggested that when the ratio of gas–liquid was greater than 6.44, the removal efficiency of COD could be obtained more than 80%.  相似文献   

19.
Mass transfer rates were determined in a 3.4 cm i.d. trickle-bed reactor in the absence of reaction by absorption measurements and in presence of reaction. Gas flow rates were varied from 0-100 l/h and liquid flow rates from 0-1.5 l/h. The catalyst particles were crushed to an average diameter of 0.054 and 0.09 cm. Mass transfer coefficients remained unaffected by change in gas flow rate but increased with liquid rate. The data from absorption measurements were evaluated with predictions based upon plug-flow and axial dispersion model. Mass transfer coefficients were found greater in case of axial dispersion model than that of plug-flow model specially at low Reynolds number (Re1 < 1).Hydrogenation of α-methylstyrene to cumene using a Pd/Al2O3 catalyst was taken as a model reaction. Intrinsic kinetic studies were made in a laboratory-stirred-autoclave. Mass transfer coefficients were determined using these intrinsic kinetic data from the process kinetic measurements in trickle-bed reactor. Mass transfer coefficients under reaction conditions were found to be considerably higher than those obtained by absorption measurements.Correlations were suggested for predicting mass transfer coefficients at low Reynolds number.The gas to liquid mass transfer coefficients for lower gas and liquid flow rates were determined in a laboratory trickle-bed reactor. The effect of axial dispersion on mass transfer was considered in order to evaluate the experimental data. Three correlations were formulated to calculate the mass transfer coefficients, which included the effect of liquid loading, particle size and the properties of the reacting substances. The gas flow rate influences the gas to liquid mass transfer only in the region of low gas velocities. In the additional investigations of gas to liquid mass transfer without reaction in trickle-bed reactor, the mass transfer coefficients were determined under reaction conditions and the intrinsic kinetics was studied in a laboratory scale stirred autoclave with suspended catalyst. A few correlations are formulated for the mass transfer coefficients. A comparison with the gas-liquid mass transfer coefficient obtained by absorption measurements showed considerable deviations, which were illustrated phenomenologically.  相似文献   

20.
Measurements of gas-liquid and liquid-solid mass transfer coefficients were performed in two types of three-phase laboratory reactor equipped with stationary catalytic basket and multiple impeller. Those reactors are called Robinson-Mahoney reactors. Local liquid-solid mass transfer coefficients were measured using naphtol particle dissolution in n-heptane at several agitation speeds. Experiments had shown that local coefficients depended on the particle locations in the basket and agitation speeds. The local coefficient values and profiles were quite similar for both studied reactors even though the reactor designs were different. Similar values of RM basket thicknesses might account for this phenomenon because the liquid-solid mass transfers could be correlated with the ones in packed beds with forced liquid circulation. Gas-liquid mass transfer coefficients were measured using standard dynamic absorption methods in air-water or hydrogen-gas oil system. As in stirred tanks, the gas-liquid mass transfers were linked to the impeller designs and characteristics (gas-inducing or classical impeller) and to the operating conditions such as agitation speeds and fluid properties. However, correlations applicable to stirred tank reactors can be used with Robinson-Mahoney reactors, the baskets behaving like additional baffles or reduction of tank diameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号