首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A novel hydrothermal process using p-nitrobenzoic acid as structure-directing agent has been employed to synthesize plate-shaped WO3 nanostructures containing holes. The p-nitrobenzoic acid plays a critical role in the synthesis of such novel WO3 nanoplates. The morphology, structure and optical property of the WO3 nanoplates have been characterized by transmission electron microcopy (TEM), scanning electron microcopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL). The lateral size of the nanoplates is 500-1000 nm, and the thickness is about 80 nm. The formation mechanism of WO3 nanoplates is discussed briefly. The gas sensitivity of WO3 nanoplates was studied to ethanol and acetone at different operation temperatures and concentrations. Furthermore, the WO3 nanoplate-based gas sensor exhibits high sensitivity for ethanol and acetone as well as quick response and recovery time at low temperature.  相似文献   

2.
Polyol process was combined with metal organic decomposition (MOD) method to fabricate a room-temperature NO2 gas sensor based on a tungsten oxide (WO3) film and another a nanocomposite film of WO3/multi-walled carbon nanotubes (WO3/MWCNTs). X-ray diffractometry (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the structure and morphology of the fabricated films. Comparative gas sensing results indicated that the sensor that was based on the WO3/MWCNT nanocomposite film exhibited a much higher sensitivity than that based on a WO3 film in detecting NO2 gas at room temperature. Microstructural observations revealed that MWCNTs were embedded in the WO3 matrix. Therefore, a model of potential barriers to electronic conduction in the composite material was used to suggest that the high sensitivity is associated with the stretching of the two depletion layers at the surface of the WO3 film and at the interface of the WO3 film and the MWCNTs when detected gases are adsorbed at room temperature. The sensor that is based on a nanocomposite film of WO3/MWCNT exhibited a strong response in detecting very low concentrations of NO2 gas at room temperature and is practical because of the ease of its fabrication.  相似文献   

3.
Controlled WO3 morphologies, such as nanorods and octahedral structures, were synthesized by the hydrothermal technique using sulfate salts based structure directing agents (SDAs). The role of the sulfate salts’ cation in controlling the shape, size and phase of WO3 nanomaterials was investigated by choosing sulfate salts whose cations are from d-bloc elements (FeSO4, (NH4)2Fe(SO4)2, CoSO4, CuSO4, ZnSO4), an alkaline earth metal (MgSO4) and a non-metal ((NH4)2SO4). In addition chloride (MnCl2) and acetate (Zn(CH3CO2)2) anion based SDAs were also used in order to clarify the role of sulfate ions in the growth of WO3 nanostructures. We controlled the pH of the reaction medium with oxalic acid. The obtained WO3 samples were investigated by SEM, micro-Raman, and XRD. At pH = 1, the WO3 samples exhibit novel superstructures consisting of aligned hexagonal nanorods, whereas at pH = 5.25, novel twin octahedral morphology with a cubic structure is obtained. The results demonstrate that the phase and morphology change is influenced by the pH and both the anion and the cation of the SDA. A growth mechanism for the obtained novel WO3 morphologies is presented.  相似文献   

4.
In the current study, samarium tungstate Sm2(WO4)3 nanoparticles were synthesized via a new route based on the reaction between samarium nitrate hexahydrate and sodium tungstate dihydrate in an aqueous solution. Besides, three amino acids such as cysteine, alanine, and glycine were introduce as capping agents and their effects on the morphology and particle size of Sm2(WO4)3 were investigated. It was found that size and morphology could be easily realized by changing the type of amino acids. XRD, SEM, EDS, and UV–Vis spectroscopy were employed to characterize structural, morphological, and optical properties of Sm2(WO4)3 nanoparticles. Sm2(WO4)3 nanoparticles indicated a paramagnetic behavior at room temperature, as evidenced by using vibrating sample magnetometer. Furthermore, the photocatalytic properties of as synthesized Sm2(WO4)3 were evaluated by degradation of methyl orange as water contaminant.  相似文献   

5.
As WO3 is excellent material for electrochromic displays more investigation is needed to find the good and low cost method for preparation of WO3 nanostructures with uniform morphology and narrow distributions using a surfactant mediated method. In this study, the synthesis of WO3 nanostructures was accomplished using various surfactants such as polyethylene glycol, sodium chloride and sodium dodecyl sulfate and sodium tungstate and diethyl sulfate as the inorganic precursors. All samples were characterized for their opto-structural and morphological studies by UV-Vis spectrophotometer, X-ray diffractometer and scanning electron microscopy techniques. The electrochromic performance of these samples was studied in LiClO4/PC as electrolyte for Li+ insertion/extraction. The use of surfactants has been employed to enhance the uniformity of WO3 samples.  相似文献   

6.
Tungsten oxide (WO3) nanostructures were synthesised using the microwave-assisted wet chemical method without any addition of surfactant for three different microwave irradiation times (10, 20 and 30 min). Then as-prepared nanostructures were characterised using various characterization techniques to know their structural, morphology and optical properties. The monoclinic and orthorhombic (WO3) crystal structure was obtained from the as-prepared nanostructures by using X-ray diffraction analysis and its calculated crystalline size were found to be increased from 14 to 18 nm on increasing microwave irradiation time. The functional groups were investigated by using Fourier transform infrared spectroscopy analysis and the W–O chemical bonding nature was confirmed. The surface morphology was unclear using scanning electron microscope analysis, and a careful observation in high resolution transmission electron microscope studies shows that rod shaped structure. A blue-shifted optical absorption spectrum was observed by ultraviolet–visible spectroscopy analysis analysis and the bandgap energy value of WO3 was calculated as approximately 3.62 eV. The emission behaviours were investigated by using photoluminescence spectrofluorometer analysis and an enhanced defect reduced emission was obtained. Finally, the electrochemical properties were analyzed by using cyclic voltammogram and galvanostatic charge–discharge analysis analyses. The maximum capacitance was recorded at 264 F/g which was declined to 149 F/g with the growth of WO3 nanostructures size. Hence, the effect of microwave on structure and morphology, and consequent supercapacitor performances of WO3 were discussed in details.  相似文献   

7.
Multistructural tungsten oxide samples were prepared using the hydrothermal method in the presence of different sulfates. In this paper, we present WO3 nanorods, WO3 toothpicks and cubic WO3 samples prepared in the presence of Na2SO4, Li2SO4 and FeSO4, respectively. These catalysts were characterized by XRD, SEM, TEM, EDS and UV-vis DR. It is found that Fe2O3 was impregnated in the cubic WO3 which is different from other two samples. After Pt loading, Pt-loaded WO3 with different morphology acting as novel visible light-driven photocatalysts showed remarkably high photocatalytic activity under visible light radiation. Significantly, the maximum efficiency of photodegradation was observed at 1 wt.% Pt loading amount in the cubic WO3 sample. The highest photocatalytic activity of the cubic Pt/Fe2O3/WO3 photocatalyst is attributed to the synergistic action of Pt nanoparticles and Fe2O3.  相似文献   

8.
This study investigates the effect of various concentrations of Tungsten Oxide (WO3) nanoparticles on the performance of dye sensitized solar cells. For that WO3 nanoparticles are synthesized by using solvothermal method and annealed at room temperature, 100 and 400 °C. The crystalline and morphology of the synthesized WO3 nanoparticles was characterized by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Solar cell with 1 % WO3 nanoparticles (annealed at 100 °C) added TiO2 electrode exhibits an enhanced short-circuit current density of 12.94 mA cm?2, open-circuit photo voltage of 0.67 V, fill factor of 0.57, and overall power conversion efficiency of 5.03 %.  相似文献   

9.
Pure tungsten oxide (WO3) and iron-doped (10 at.%) tungsten oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation (EBE) technique. The films were deposited at room temperature under high vacuum onto glass as well as alumina substrates and post-heat treated at 300 °C for 1 h. Using Raman spectroscopy the as-deposited WO3 and WO3:Fe films were found to be amorphous, however their crystallinity increased after annealing. The estimated surface roughness of the films was similar (of the order of 3 nm) to that determined using Atomic Force Microscopy (AFM). As observed by AFM, the WO3:Fe film appeared to have a more compact surface as compared to the more porous WO3 film. X-ray photoelectron spectroscopy analysis showed that the elemental stoichiometry of the tungsten oxide films was consistent with WO3. A slight difference in optical band gap energies was found between the as-deposited WO3 (3.22 eV) and WO3:Fe (3.12 eV) films. The differences in the band gap energies of the annealed films were significantly higher, having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films respectively. The heat treated films were investigated for gas sensing applications using noise spectroscopy. It was found that doping of Fe to WO3 produced gas selectivity but a reduced gas sensitivity as compared to the WO3 sensor.  相似文献   

10.
A uniform WO3 nanowire structure was prepared by two-step thermal oxidation method on Si substrate. WO3 nanowires show different morphology and crystal structures after annealing at different temperatures. The influence of annealing temperature on WO3 nanowires was investigated by SEM, TEM and XRD. Higher crystallization property and lower surface state was obtained with higher annealing temperature. The gas sensing properties of the WO3 nanowires with various annealing temperatures to NO2 with the concentration ranging from 1 to 4 ppm were examined at different temperatures ranging from room temperature to 200 °C. The results indicate that WO3 nanowires can greatly lower the working temperature of sensors and sensors based on WO3 nanowires show p-type or n-type sensing behaviors depending on annealing temperatures. Possible sensing mechanism of p-type WO3 nanowires and the influence of annealing temperature on sensing types was explained. This work might supply new ideas about gas sensing mechanisms and open a new way to develop p-type WO3 sensing materials.  相似文献   

11.
Samarium doped tungsten oxide film was synthesized by a hydrothermal method with sodium tungstate as W precursor and samarium oxide as dopant. After annealing at 450 °C for 0.5 h, the morphology and structural characterization of as-prepared films were determined with scanning electron microscopy, X-ray diffraction and high-resolution transmission electron microscope. For the pure and Sm-doped WO3 films serving as the photoanodes, photoelectrocatalytic properties were demonstrated by degrading methyl orange and methylene blue solution, showing that Sm-doped WO3 film has faster degrading rate than pure WO3 film. Photoelectrochemical properties were investigated using linear sweep voltammetry, electrochemical impedance spectroscopy, Mott–Schottky and incident photon to current conversion efficiency. Sm-doped WO3 achieves a high photocurrent of 1.50 mA cm?2 at 1.4 V versus. Ag/AgCl, which is 1.8 times as high as that of pure WO3 film (0.83 mA cm?2). Moreover, photogenerated hole injection efficiency was improved by retarding the recombination at the interface of electrode/electrolyte. The results indicate the Sm2O3 formed by excess doping led to a better photoelectrocatalytic and photoelectrochemical activities of Sm-doped WO3 film, suggesting that the doping of Sm is a favorable strategy to improve the performance of WO3 film photoanode.  相似文献   

12.
Nanostructured tungsten (W) and tungsten trioxide (WO3) films were prepared by glancing angle deposition using pulsed direct current magnetron sputtering at room temperature with continuous substrate rotation. The chemical compositions of the nanostructured films were characterized by X-ray photoelectron spectroscopy, and the film structures and morphologies were investigated using X-ray diffraction and high resolution scanning electron microscopy. Both as-deposited and air annealed tungsten trioxide films exhibit nanostructured morphologies with an extremely high surface area, which may potentially increase the sensitivity of chemiresistive WO3 gas sensors. Metallic W nanorods formed by sputtering in a pure Ar plasma at room temperature crystallized into a predominantly simple cubic β-phase with <100> texture although evidence was found for other random grain orientations near the film/substrate interface. Subsequent annealing at 500 °C in air transformed the nanorods into polycrystalline triclinic/monoclinic WO3 structure and the nanorod morphology was retained. Substoichiometric WO3 films grown in an Ar/O2 plasma at room temperature had an amorphous structure and also exhibited nanorod morphology. Post-deposition annealing at 500 °C in air induced crystallization to a polycrystalline triclinic/monoclinic WO3 phase and also caused a morphological change from nanorods into a nanoporous network.  相似文献   

13.
Thin films of WO3 were prepared by surfactant assisted spray pyrolysis on F-doped SnO2 (FTO) conductive glass by using hexadecyltrimethylammonium bromide (HTAB) and polyethylene glycol (PEG400):HTAB as growth controlling agents. The surface tension of the spraying solutions was experimentally evaluated and was correlated with the deposition processes (nucleation and growth) of very smooth and homogenous films. The effect of the surfactant, alone and associated with PEG, on the structure (XRD), morphology (AFM), surface composition (XPS), FTIR and hydrophilicity (contact angle) were investigated and their influence on the electrochromic activity was discussed. Using surfactants and PEG, the coloration efficiency, transmission modulation and cycling stability of the WO3 thin films can be enhanced.  相似文献   

14.
The intrinsic properties of semiconducting oxides having nanostructured morphology are highly appealing for gas sensing. In this study, the fabrication of nanostructured WO3 thin films with promising surface characteristics for hydrogen (H2) gas sensing applications is accomplished. This is enabled by developing a chemical vapor deposition (CVD) process employing a new and volatile tungsten precursor bis(diisopropylamido)-bis(tert-butylimido)-tungsten(VI), [W(NtBu)2(NiPr2)2]. The as-grown nanostructured WO3 layers are thoroughly analyzed. Particular attention is paid to stoichiometry, surface characteristics, and morphology, all of which strongly influence the gas-sensing potential of WO3. Synchrotron-based ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), X-ray photoelectron emission microscopy (XPEEM), low-energy electron microscopy (LEEM) and 4-point van der Pauw (vdP) technique made it possible to analyze the surface chemistry and structural uniformity with a spatially resolved insight into the chemical, electronic and electrical properties. The WO3 layer is employed as a hydrogen (H2) sensor within interdigitated mini-mobile sensor architecture capable of working using a standard computer's 5 V 1-wirebus connection. The sensor shows remarkable sensitivity toward H2. The high, robust, and repeatable sensor response (S) is attributed to the homogenous distribution of the W5+ oxidation state and associated oxygen vacancies, as shown by synchrotron-based UPS, XPS, and XPEEM analysis.  相似文献   

15.
The present study explores, the pure and silver (Ag) doped WO3 nanoparticles synthesized by microwave irradiation method. Powder X-ray diffraction results reveal that the WO3 doped with Ag concentration from 0 to 10 wt% crystallizes in monoclinic structure. TEM analysis shows both pristine and silver doped WO3 nanoparticles. They are having spherical morphology with a average size from 30 to 40 nm. Scanning electron microscopy studies depicts that both the pristine and Ag doped WO3 form in spherical shaped morphology with an average diameter of 40–30 nm, which is in proper agreement with the average crystallite sizes calculated by Scherrer’s formula. A considerable red shift in the absorbing band edge and a decrease in the band gap energy from 3.00 to 2.85 eV for Ag doped samples were observed by using UV–DRS spectra analysis. The defects in crystal and oxygen deficiencies were analyzed by photoluminescence spectra analysis.  相似文献   

16.
In this paper, gadolinium tungstate Gd2(WO4)3 nanoparticles were synthesized via a new approach based on the reaction between gadolinium nitrate hexahydrate and Na2WO4.2H2O in water.   Besides, three surfactants such as ethylene diaminetetraacetic acid (EDTA), sodium dodecyl sulfate (SDS), and polyvinylpyrrolidone (PVP) were used to investigate their effects on the morphology and particle size of Gd2(WO4)3 nanoparticles. According to the vibrating sample magnetometer, gadolinium tungstate Gd2(WO4)3 nanoparticles indicated a paramagnetic behavior at room temperature. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (UV–Vis), and energy dispersive X-ray microanalysis (EDX). To evaluate the catalytic properties of nanocrystalline gadolinium tungstate, the photocatalytic degradations of methyl orange under ultraviolet light irradiation were carried out.  相似文献   

17.
Abstract

Hydrothermal reaction of Ln nitrate and Na2WO4 at pH=8 and 200 °C for 24 hours, in the absence of any additive, has directly produced the scheelite-type sodium lanthanide tungstate of NaLn(WO4)2 for the larger Ln3+ of Ln=La-Dy (including Y, Group I) and an unknown compound that can be transformed into NaLn(WO4)2 by calcination at the low temperature of 600 °C for the smaller Ln3+ of Ln=Ho-Lu (Group II). With the successful synthesis of NaLn(WO4)2 for the full spectrum of Ln, the effects of lanthanide contraction on the structural features, crystal morphology, and IR responses of the compounds were clarified. The temperature- and time-course phase/morphology evolutions and the phase conversion upon calcination were thoroughly studied for the Group I and Group II compounds with Ln=La and Lu for example, respectively. Unknown intermediates were characterized by elemental analysis, IR absorption, thermogravimetry, and differential scanning calorimetry to better understand their chemical composition and coordination. The photoluminescence properties of NaEu(WO4)2 and NaTb(WO4)2, including excitation, emission, fluorescence decay, and quantum efficiency of luminescence, were also comparatively studied for the as-synthesized and calcination products.  相似文献   

18.
Tungsten trioxide (WO3) powders were prepared via a simple hydrothermal method. The morphology, structure and photochromic activity of the synthesized WO3 powders were studied by X-ray diffraction, scanning electron microscopy and UV–vis spectrophotometer combined with color difference meter. The results showed the synthesized WO3 powders with hexagonal phase got much better photochromic properties than the WO3 powders with cubic phase, the ones not appear until about 160 °C. Besides, the WO3 powder synthesized at 120 °C exhibited the best photochromic properties of the samples prepared below 160 °C, the particles of which formed a shape of clusters of cactus with uniform size and good dispersion.  相似文献   

19.
Among different type of transition metal oxides, tungsten trioxide (WO3) is a suitable candidate for electronic device fabrication due to its n-type property and wide band gap. Herein, one-dimensional tungsten trioxide (WO3) nanorods were achieved from an aqueous solution of sodium tungstate dihydrate (Na2WO4·2H2O) and sodium chloride (NaCl) in an acidic media by a time-optimized hydrothermal synthesis in autoclave at 180°C or different synthesis durations. For studying morphology and size of obtained powder, X-ray diffraction (XRD), scanning electron microscope (SEM), and high resolution transmission electron microscope (HRTEM) were applied. Finally, WO3 nanorods of about 2–3 μm in length and 100–200 nm in diameter were obtained during 3 h hydrothermal process.  相似文献   

20.
TiO2/SnO2 branched heterojunction nanostructure with TiO2 branches on electrospun SnO2 nanofiber (B‐SnO2 NF) networks serves as a model architecture for efficient self‐powered UV photodetector based on a photoelectrochemical cell (PECC). The nanostructure simultaneously offers a low degree of charge recombination and a direct pathway for electron transport. Without correcting 64.5% loss of incident photons through light absorption and scattering by the F‐doped tin oxide (FTO) glass, the incident power conversion efficiency reaches 14.7% at 330 nm, more than twice as large as the nanocrystalline TiO2 (TiO2 NC, 6.4%)‐film based PECC. By connecting a PECC to an ammeter, the intensity of UV light is quantified using the output short‐circuit photocurrent density (Jsc) without a power source. Under UV irradiation, the self‐powered UV photodetector exhibits a high responsivity of 0.6 A/W, a high on/off ratio of 4550, a rise time of 0.03 s and a decay time of 0.01 s for Jsc signal. The excellent performance of the B‐SnO2 NF‐based PECC type self‐powered photodetector will enable significant advancements for next‐generation photodetection and photosensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号