首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Indium tin oxide (ITO) films are widely used for a transparent electrode of organic light emitting devices (OLEDs) because of its excellent conductivity and transparency. Two types of ITO substrates with different surface roughness were selected to use as anode of OLEDs. In addition, two types of etching process of ITO substrate, particularly the etching time, were also carried out. It was found that the surface roughness and/or the etching process of ITO substrate strongly influenced on an edge of ITO surface, further affected the operating characteristics and reliability of devices.  相似文献   

2.
White organic light emitting diode (OLED) devices with the structure ITO/PHF:rubrene/Al, in which PHF (poly(9,9-di-n-hexylfluorenyl-2,7-diyl)) is used as blue light emitting host and rubrene (5,6,11,12-tetraphenylnapthacene) as an orange dye dopant, have been fabricated. Indium tin oxide (ITO) coated-glass and aluminium were used as anode and cathode, respectively. The devices were fabricated with various rubrene-dopant to obtain a white light emission. The OLED device that composed of several concentrations of rubrene-doped PHF film was prepared in this study. It was found that the concentration of rubrene in the PHF-rubrene thin film matrix plays a key role in producing the white color emission. In a typical result, the device composed of 0.06 wt.% rubrene-dopant produced the white light emission with the Commission Internationale de L'Eclairage (CIE) coordinate of (0.30,0.33). The turn-on voltage and the brightness were found to be as low as 14.0 V and as high as 6540 cd/m2, respectively. The annealing technique at relatively low temperature (50 °C, 100 °C, and 150 °C) was then used to optimize the performance of the device. In a typical result, the turn-on voltage of the device could be successfully reduced and the brightness could be increased using the annealing technique. At an optimum condition, for example, annealed at 150 °C, the turn-on voltage as low as 8.0 V and the brightness as high as 9040 cd/m2 were obtained. The mechanism for the improvement of the device performance upon annealing will be discussed.  相似文献   

3.
We have studied the use of a thin copper iodide (CuI) film as an efficient injection layer of holes from indium tin oxide (ITO) anode in a light-emitting diode structure based on tris-8-hydroxyquinoline aluminium (Alq3). The results of impedance analysis of two types of diode structures, ITO/CuI/Alq3/poly(ethylene glycol) dimethyl ether/Al and ITO/Alq3/poly(ethylene glycol) dimethyl ether/Al, are presented. Comparative analysis of their current density-voltage, luminance-voltage and impedance characteristics shows that presence of CuI layer facilitates injection of holes from ITO anode into the light-emitting layer Alq3 and increases electroluminescence efficiency of the organic light emitting diodes.  相似文献   

4.
Organic light emitting device (OLED) with a fluorescence-interlayer-phosphorescence emissive structure (FIP EML) is proposed to solve efficiency roll-off issue effectively. By doping fluorescent emitter of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and phosphorescent emitter of tris(1-phenylisoquinolinolato-C2,N)iridium(III) (Ir(piq)3) into the different regions of emission zone to form FIP EML in red OLED, an improvement of more than 20% in luminance efficiency roll-off compared with that of typical phosphorescent OLED with single EML in 10-500 mA/cm2 range has been obtained. Detailed mechanisms have been studied. Such improvement should be attributed to the distinct roles of the two emitters, where DCJTB mainly used to influence the carrier transport leading to an improved balance of charge carriers while Ir(piq)3 functions as the radiative decay sites for most generated excitons. Meanwhile, with the help of the formation of FIP EML, the redistribution of excitons in recombination zone, the suppression of non-radiative exciton quenching processes and the elimination of energy transfer loss also contribute to the enhancement of efficiency roll-off. The method proposed here may provide a route to develop efficient OLED for high luminance applications.  相似文献   

5.
The effect of dry process and wet process on the characteristics of phosphorescence organic light-emitting devices (OLEDs) employing a phosphorescent dye fac-tris(2-phenylpyridine) iridium(III) (Ir(ppy)3) doped into a methoxy-substituted starburst low-molecule material methoxy-substituted 1,3,5-tris[4-(diphenylamino) phenyl]benzene (TDAPB) are investigated. The FT-IR and absorption spectra of TDAPB films fabricated by a dry process, and a wet process are almost same, and the PL spectra of those films are different. The carrier transport capability of TDAPB by a dry process is lower than that by a wet process. The photoluminescence intensity of Ir(ppy)3 doped in TDAPB fabricated by a wet process is higher than that by a dry process. A maximum external current efficiency of more than 20 cd/A and luminance of more than 10,000 cd/m2 were obtained. Maximum luminance of devices monotonously decreases with increasing the thickness of a dry-processed emitting layer. The main emission zone of the OLED was located in almost at the center of the emitting layer. The improvement of device performance in the OLED fabricated by a wet process was achieved due to the high efficient energy transfer from TDAPB to Ir(ppy)3, high carrier transporting capability and the formation of homogeneous film, compared with that fabricated by a dry process.  相似文献   

6.
High efficiency phosphorescent organic light emitting diodes (OLEDs) are realized by inkjet printing based on small molecules commonly used in vacuum processes in spite of the limitation of the limited solubility. The OLEDs used the inkjet printed 5 wt.% tris(2-phenylpyridine)iridium(III) (Ir(ppy)3) doped in 4,4′-Bis(carbazol-9-yl)biphenyl (CBP) as the light emitting layer on various small molecule based hole transporting layers, which are widely used in the fabrication of OLEDs by vacuum processes. The OLEDs resulted in the high power and the external quantum efficiencies of 29.9 lm/W and 11.7%, respectively, by inkjet printing the CBP:Ir(ppy)3 on a 40 nm thick 4,4′,4″-tris(carbazol-9-yl)triphenylamine layer. The performance was very close to a vacuum deposited device with a similar structure.  相似文献   

7.
Colour tuning of white polymer light emitting diode (LED) light sources can be attained by various methods at various stages in the production process of the lamps and/or by the design of the active material incorporated in the LEDs. In this contribution we will describe the methods and discuss the physical background of colour tuning. Furthermore, the material design has led to polymers which are more stable during electrical stress, so that colour shift during lifetime can be excluded for white polymer LEDs.  相似文献   

8.
柔性有机薄膜电致发光显示材料及器件   总被引:6,自引:0,他引:6  
有机薄膜电致发光显示器件(OLED)近年来得到了迅猛发展,是未来全固体平板式彩色显示器的重要候选者,其最大优势之一是可以制作成柔性显示器件。本文综述了柔性有机电致发光材料及器件的发展概况、工作原理与优缺点,目前制作此类器件中存在的困难及解决这些困难的有效措施。  相似文献   

9.
为了研究有机电致发光器件光电性能随工作参数的变化,对ITO/TPD(50nm)/AIq3(50nm)/Mg/Al的实验数据进行分析,发现该器件在低压时属于注入电流限制,高压时为陷阱电荷限制(TCLC)。另外,采用实验数据验证复合理论,发现通过电场数据和电流密度数据(F^2/J)能够直接地反映器件量子效率随电流密度的变化趋势。  相似文献   

10.
An ultra-thin Pt layer could be used as a transparent conducting anode to replace the ITO used today in a top-emitting OLED. A proper thickness of Pt thin layer is needed to avoid large leakage current while still keeping the high transparency for visible light. X-ray reflectivity and AFM were used to measure the morphology of e-gun deposition Pt thin films grown on glass substrates. The islands grown on the glass coalesced at the thickness of less than 4 nm. For the sample of 4 nm thickness, the sheet resistance is 800 Ω/□ with a transparency of 65%.  相似文献   

11.
Photo- and electroluminescence of five bithiophene disubstituted 1,3,4-thiadiazoles, constituting a new class of solution processable materials for organic opto-electronics, were studied. It was found that the introduction of alkyl solubilizing substituents bathochromically shifted the photo- and electroluminescence bands. The most pronounced effect was observed for the substitution at the Cα position which changed the emitting light color from bluish to green. All five derivatives were tested in host/guest type organic light emitting diodes (OLEDs) with either poly(N-vinylcarbazole) (PVK) or poly(N-vinylcarbazole) + 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PVK + PBD) matrices. The latter matrix turned out especially well suited for these guest molecules yielding devices of varying color coordinates. The best luminance (750 cd/m2) was measured for 2,5-bis(5′-octyl-2,2′-bithiophene-5-yl)-1,3,4-thiadiazole with the luminous efficiency exceeding 0.4 cd/A.  相似文献   

12.
We studied structural and optical properties of 5′ replaced pyrazoline by hindered phenol 2,6-di-tert.-butyl-4-(2,5-diphenyl-3,4-dihydro-2H-pyrazol-3-yl)-phenol (HPhP) films for application in organic light-emitting diode (OLED) as a hole transport layer (HTL). Analysis of impedance and current-voltage characteristics of ITO/HPhP/Al structure has shown that the current is limited by a space charged region with exponential distribution of traps near Fermi level. Characteristics of electroluminescence structure ITO/HPhP/Alq3/poly(ethylene glycol) dimethyl ether/Al was studied and analyzed. We performed the comparative analysis of luminescence time decay in two types of electroluminescent devices with HTL from pyrazolines derivative with hindered phenol and without it. We showed that hindered phenol in HTL slows down the degradation processes in OLED.  相似文献   

13.
The synthesis and photophysical study of a cyclometalated mixed-ligand iridium(III) complex are reported. The iridium complex (called IrQ(ppy)2-5Cl) has two cyclometalated 2-phenylpyridine (ppy) ligands and one 8-hydroxyquinoline (Q) ligand, where one of the H atom is substituted by Cl atom. Absorption and photoluminescence spectra are studied for the neat film and films of IrQ(ppy)2-5Cl doped in 4,4′-N,N′-dicarbazole-biphenyl and polystyrene, together with the electroluminescence spectra using multi-layer light emitting devices. The electronic states are studied using density functional theory calculations. Emission bands are observed at 502 and 666 nm, which arise from ppy and Q ligands, respectively.  相似文献   

14.
Simple high efficiency deep blue phosphorescent organic light-emitting diodes were developed using a mixed host of high triplet energy host materials. A hole transport type host was used both as the hole transport layer and host in the mixed host emitting layer and an electron transport type host was mixed with the hole transport type host in the emitting layer. A three organic layer device structure of the hole transport layer/emitting layer/electron transport layer gave high external quantum efficiency of 26.4% with a color coordinate of (0.14, 0.19).  相似文献   

15.
柔性显示器件的衬底材料及封装技术   总被引:6,自引:0,他引:6  
有机电致发光显示器件(OLED)被认为是最理想、最具发展前景的下一代显示技术之一.在柔性衬底上制备的有机电致发光器件拓宽了OLED的使用范围,是其重要发展方向.本文综述了柔性显示器件的衬底材料及封装技术的发展概况,比较了玻璃、聚合物、金属3种衬底材料的优缺点,并简单介绍了以这3种材料为衬底的柔性显示器件的封装技术.  相似文献   

16.
To examine the mechanism of a reproducible on-off switching of light emission from a novel organic electroluminescent (EL) device consisting of a spin crossover complex of [Fe(dpp)2](BF4)2 (dpp = 2,6-di(pyrazol-1-yl)pyridine) and chlorophyll a, we have investigated the EL properties of an ITO/chlorophyll a:[Fe(dpp)2](BF4)2/Al device. The comparison with a reference device not containing [Fe(dpp)2](BF4)2 revealed that the introduction of [Fe(dpp)2](BF4)2 results in small threshold voltage and large external quantum efficiency. Moreover, the EL spectra in the low-temperature region, where [Fe(dpp)2](BF4)2 is in the low-spin state, showed the emission from the ITO electrode, suggesting that injected electrons pass through the active layer via [Fe(dpp)2](BF4)2.  相似文献   

17.
蒋伟  孙岳明 《功能材料》2007,38(A01):172-173
以二芳胺和4-溴-1,8-萘酰亚胺体系为原料,经CuI/18-crown-6/K2CO3反应催化制备了一系列萘酰亚胺衍生物,经NMR,MS等表征了其结构,并用UV/Vis和PL测定了此类化合物的发光性能。  相似文献   

18.
This paper reports the synthesis and electroluminescent properties of a series of blue emitting materials with arylamine and diphenylvinylbiphenyl groups for applications to efficient blue organic light-emitting diodes (OLEDs). All devices exhibited blue electroluminescence with electroluminescent properties that were quite sensitive to the structural features of the dopants in the emitting layers. In particular, the device using dopant 4 exhibited sky-blue emission with a maximum luminance, luminance efficiency, power efficiency, external quantum efficiency and CIE coordinates of 39,000 cd/m2, 12.3 cd/A, 7.45 lm/W, 7.71% at 20 mA/cm2 and (x = 0.17, y = 0.31) at 8 V, respectively. In addition, a blue OLED using dopant 2 with CIE coordinates (x = 0.16, y = 0.18) at 8 V exhibited a luminous efficiency, power efficiency and external quantum efficiency of 4.39 cd/A, 2.46 lm/W and 2.97% at 20 mA/cm2, respectively.  相似文献   

19.
Highly efficient phosphorescent white organic light-emitting diodes (PHWOLEDs) were developed using a deep blue phosphorescent emitter doped into a mixed host of high triplet energy host materials. The deep blue emitting layer was combined with a red:green emitting layer to fabricate PHWOLEDs. A high quantum efficiency of 19.5% with a color coordinate of (0.29,0.38) and 19.8% with a color coordinate of (0.39,0.46) were achieved in the PHWOLEDs using the mixed host emitting layer doped with a deep blue phosphorescent dopant. In addition, a low optimum doping concentration below 5% in red, green and blue dopants was realized in the PHWOLEDs.  相似文献   

20.
This study examined the anode material properties of Ga-doped zinc oxide (GZO) thin films deposited by pulsed DC magnetron sputtering along with the device performance of organic light emitting diodes (OLEDs) using GZO as the anode. The structure and electrical properties of the deposited films were examined as a function of the substrate temperature. The electrical properties of the GZO film deposited at 200 °C showed the best properties, such as a low resistivity, high mobility and high work function of 5.3 × 10− 4Ω cm, 9.9 cm2/Vs and 4.37 eV, respectively. The OLED characteristics with the GZO film deposited under the optimum conditions showed good brightness > 10,000 cd/m2. These results suggest that GZO films can be used as the anode in OLEDs, and a lower deposition temperature of 200 °C is suitable for flexible devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号