首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为了满足对老年人活动能力的检测需求,提出一种基于人体动作状态序列时序分析的运动模式识别方法。利用加速度传感器采集人体腰部的运动信息,通过滑动窗口对加速度数据进行自动检测、去噪和特征提取,构造隐马尔科夫模型实现人体日常活动序列的训练和识别。实验结果证明该方法可以有效区分不同的日常活动行为,能在辅助医疗中发挥重要作用。  相似文献   

2.
针对基于循环神经网络(RNN)的人体运动合成方法存在首帧跳变,进而影响生成运动的质量的问题,提出一种带有隐状态初始化的人体运动合成方法,将初始隐状态作为自变量,利用神经网络的目标函数作为优化目标,并使用梯度下降的方法进行优化求解,以得到一个合适的初始隐状态。相较于编码器-循环-解码器(ERD)、残差门控循环单元(RGRU)模型,所提方法在首帧的预测误差分别减小63.51%和6.90%,10帧的总误差分别减小50.00%和4.89%。实验结果表明,该方法无论是运动合成质量还是运动预测精度都优于不进行初始隐状态估计的方法;它通过准确估计基于RNN的人体运动模型的首帧隐状态可提升运动合成的质量,并且为实时安全监测中的动作识别模型提供可靠的数据支持。  相似文献   

3.
运动人体识别模式识别领域的研究热点。目标在运动过程中产生的时间域和空间域的形变可提供重要的识别信息。本文提出一种基于统计形状分析的识别方法,用Kendall形状模型来描述帧间提取的人体轮廓,并应用隐马尔科夫模型(HMM)来捕捉目标时空域上的形变信息。由于传统HMM框架下,隐藏状态与训练数据相互正交,给学习过程带来很大困难。由此提出一种非参数HMM模型,用非参数核密度估计算法来学习观测概率分布,以补偿随机隐藏状态造成的不确定性,优化了HMM训练过程。最后对此方法进行了实验分析。  相似文献   

4.
针对单一特征值表征能力差的情况,根据小波变换的多分辨分析思想,采用基于多种母小波的多特征融合的特征提取方法对表面肌电信号进行特征提取。本实验对十名测试人员进行肌电信号的采集,对日常生活中的四个基本下肢动作进行测试。首先,分别基于DB、Dmey和Bior三种不同的母小波,采用离散小波变换通过不同的分析方法对表面肌电信号进行多尺度分解。然后,通过分析发现,不同肌肉在不同特征提取方式下表征效果存在差异,为了结合不同特征方式的特点对基于不同小波基的特征值进行融合分析并比较。最后,将特征值分别输入到Elman神经网络和BP神经网络进行模式识别并比较分析。实验结果表明:通过对不同特征值进行识别比较,融合处理的特征值可以达到98.7%的识别率,并且,BP神经网络相较于Elman神经网络识别效果更好。  相似文献   

5.
面向人体惯性运动捕捉系统,提出一种基于长短期记忆网络(LSTM)的人体运动模式识别方法。设计1个包含2层LSTM层的深度学习神经网络对人体三维加速度信息进行自动特征提取并对多类运动模式进行时序建模,从而实现对运动模式的快速实时识别。实验基于WISDM公开数据集,对人体右腿前口袋部位的三维加速度信息进行分析。验证模型识别人体慢跑、步行、坐、站、上楼、下楼运动过程的准确率为97.5%,并通过对比实验验证了该方法的有效性, 为基于移动设备及可穿戴设备的人体运动识别研究提供了一个可行的方法。  相似文献   

6.
针对传统人体姿态识别数据采集易受环境干扰、难以解决人体运动姿态的相似性和 人体运动执行者的特征差异性等问题,提出一种基于少量关键序列帧的人体姿态识别方法。首先 对原有运动序列进行预选,通过运动轨迹取极值的方法构造初选关键帧序列,再利用帧消减算法 获取最终关键帧序列;然后对不同人体姿态分别建立隐马尔科夫模型,利用 Baum-Welch 算法计 算得到初始概率矩阵、混淆矩阵、状态转移矩阵,获得训练后模型;最后输入待测数据,应用前 向算法,得到对于每个模型的概率,比较并选取最大概率对应的姿态作为识别结果。实验结果表 明,该方法能够有效的选取原始运动序列的关键帧,提高人体姿态识别的准确性。  相似文献   

7.
提出并实现一种基于移动设备的用户运动行为的检测算法.在用户随身携带移动设备的情况下,算法就可以根据移动设备中的三轴加速度数据,判别出来用户的行为状态.算法综合分析了加速度传感器数据的时域和频域特性,并通过方向无关性和步幅处理,进一步提高算法的适应性.算法对所抽取21个运动特征值进行了主成分分析,找出了11个主要特征成分,然后使用这些主成分对运行数据进行识别分类.提高了算法准确度,并降低了算法的时间和空间复杂度.在对分类算法综合分析和比较后,J48判决树算法被采纳.算法还根据人类运动的习惯和特性,对特性分类并计算分类的结果,再采用隐式Markov模型进行处理,进一步提高识别的准确度.对多人、多状态数据的实验表明,这种综合方法具有较高的识别准确度和适应性,在对多人多次实际运动数据的处理中,正确识别率可以达到96.13%.  相似文献   

8.
基于运动传感器的手势识别   总被引:1,自引:0,他引:1  
为了使手势交互较少受到视角和光线的限制,提出利用可穿戴传感器作为输入设备和机器学习算法相结合进行手势识别的方法.通过采集加速度仪和地磁仪的数据,然后进行预处理、特征提取和特征选择,最终由隐马尔科夫模型进行手势分类和识别.为验证方法的有效性,设计实现了一个原型系统进行识别和对比实验.实验结果表明,该方法可以实时有效地对手...  相似文献   

9.
为了满足主动康复训练和人机交互等复杂应用场景对多样性的人手运动模式识别需求,提出了一种基于多通道表面肌电信号sEMG小波包分解特征的人手动作模式识别方法。通过实验对比分析,确定了最佳采样布局方案,通过采集前臂表面肌电信号,设计了基于数字滤波器的肌电信号活动段自动标识算法,能快速准确完成样本动作标签的制作。以原始肌电信号的小波包分解系数作为特征向量训练分类器。通过对比不同隐含层节点数对分类器模式识别准确率的影响,最终确定BP神经网络模式分类器的所有结构参数。设计并训练完成了BP神经网络人手运动模式分类器。对9种手部运动的平均识别率达到93.6%,计算时间小于150ms。  相似文献   

10.
以一维空间自组织特征映射网络为识别模型,采用两级识别的方法,提出了一种基于自组织网络的数字识别方法,仿真结果表明此方法具有识别率高、识别速度快的优点,具有广阔的应用前景.  相似文献   

11.
基于HMM方法的银行票据自动识别   总被引:2,自引:0,他引:2  
利用隐态马尔可夫模型(HMMs),对银行票据中金额的大小写数据识别问题进行了研究.主要内容包括建立新颖的文字分刻算法;设计HMM训练和识别算法.在HMM系统中,将使用频率比较高的手写体错别字和同音字作为不同的字符类来处理;同时在HMM的训练过程中,提出了平滑参数的新方法.实验结果表明,该方法在实践中是可行的,在银行票据自动识别中有很好的应用前景.  相似文献   

12.
伴随虚拟现实(Virtual Reality,VR)技术的发展,以及人们对人机交互性能和体验感的要求提高,手势识别作为影响虚拟现实中交互操作的重要技术之一,其精确度急需提升[1].针对当前手势识别方法在一些动作类似的手势识别中表现欠佳的问题,提出了一种多特征动态手势识别方法.该方法首先使用体感控制器Leap Motion追踪动态手势获取数据,然后在特征提取过程中增加对位移向量角度和拐点判定计数的提取,接着进行动态手势隐马尔科夫模型(Hidden Markov Model,HMM)的训练,最后根据待测手势与模型的匹配率进行识别.从实验结果中得出,该多特征识别方法能够提升相似手势的识别率.  相似文献   

13.
Based on the regularity nature of lower-limb motion, an intent pattern recognition approach for above-knee prosthesis is proposed in this paper. To remedy the defects of recognizer based on electromyogram (EMG), we develop a pure mechanical sensor architecture for intent pattern recognition of lower-limb motion. The sensor system is composed of an accelerometer, a gyroscope mounted on the prosthetic socket, and two pressure sensors mounted under the sole. To compensate the delay in the control of prosthesis, the signals in the stance phase are used to predict the terrain and speed in the swing phase. Specifically, the intent pattern recognizer utilizes intraclass correlation coefficient (ICC) according to the Cartesian product of walking speed and terrain. Moreover, the sensor data are fused via DempsterShafer's theory. And hidden Markov model (HMM) is used to recognize the realtime motion state with the reference of the prior step. The proposed method can infer the prosthesis user's intent of walking on different terrain, which includes level ground, stair ascent, stair descent, up and down ramp. The experiments demonstrate that the intent pattern recognizer is capable of identifying five typical terrain-modes with the rate of 95.8%. The outcome of this investigation is expected to substantially improve the control performance of powered above-knee prosthesis.   相似文献   

14.
一种改进的隐马尔可夫模型在语音识别中的应用   总被引:1,自引:0,他引:1  
提出了一种新的马尔可夫模型——异步隐马尔可夫模型.该模型针对噪音环境下语音识别过程中出现丢失帧的情况,通过增加新的隐藏时间标示变量Ck,估计出实际观察值对应的状态序列,实现对不规则或者不完整采样数据的建模.详细介绍了适合异步HMM的前后向算法以及用于训练的EM算法,并且对转移矩阵的计算进行了优化.最后通过实验仿真,分别使用经典HMM和异步HMM对相同的随机抽取帧的语音数据进行识别,识别结果显示在抽取帧相同情况下异步HMM比经典HMM的识别错误率低.  相似文献   

15.
基于ICA与HMM的表情识别   总被引:1,自引:0,他引:1       下载免费PDF全文
独立分量分析(independent component analysis,ICA)是一种盲源分离的有效方法,为了进一步有效提取表情图像中隐藏的信息和提高表情识别率,可将它应用于人脸表情识别。由于脸部表情为人类情感、认知过程的研究提供了极为重要的测量依据,因此表情特征的提取和特征序列所代表的表情状态是表情识别过程中的重要步骤。为了更好地进行表情和情感的分类,提出了一种ICA结合隐马尔可夫模型(HMM)识别表情的情感分类系统,该系统首先利用ICA算法进行表情特征提取,为了加快特征提取的速度,这里采用了FastICA算法;然后通过7个训练好的HMM进行表情识别。实验结果显示,该系统使人脸表情识别的整体效果有了提高,取得了令人满意的效果,可以用来识别人脸表情。  相似文献   

16.
针对基于雷达传感器的离散人体动作识别方法难以得到实际应用的问题,文章提出了一种基于雷达传感器的连续人体动作识别方法.首先对连续动作的雷达回波信号进行预处理得到距离时间域图像.然后通过时频分析得到微多普勒时频谱图像.最后分别采用支持向量机与长短期记忆网络作为分类器进行动作识别.实验结果表明,采用长短期记忆网络作为分类器对...  相似文献   

17.
人体动作产生的辐射能量变化(Infrared radiation changes,IRC)信号是动作识别的重要线索,本文提出了一种基于隐马尔科夫模型的人体动作压缩红外分类新方法.针对人体动作的自遮挡问题,建立基于正交视角的压缩红外测量系统,获取人体动作在主投影面和辅助投影面的IRC压缩信号;然后,采用隐马尔科夫模型(Hidden Markov model,HMM)双层特征建模算法进行压缩域动作分类.实验结果表明双层特征建模的平均正确分类率高于主层特征建模,平均正确分类率可达95.71%.该方法为环境辅助生活系统提供了人体动作识别的新途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号