首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为了满足对老年人活动能力的检测需求,提出一种基于人体动作状态序列时序分析的运动模式识别方法。利用加速度传感器采集人体腰部的运动信息,通过滑动窗口对加速度数据进行自动检测、去噪和特征提取,构造隐马尔科夫模型实现人体日常活动序列的训练和识别。实验结果证明该方法可以有效区分不同的日常活动行为,能在辅助医疗中发挥重要作用。  相似文献   

2.
针对基于循环神经网络(RNN)的人体运动合成方法存在首帧跳变,进而影响生成运动的质量的问题,提出一种带有隐状态初始化的人体运动合成方法,将初始隐状态作为自变量,利用神经网络的目标函数作为优化目标,并使用梯度下降的方法进行优化求解,以得到一个合适的初始隐状态。相较于编码器-循环-解码器(ERD)、残差门控循环单元(RGRU)模型,所提方法在首帧的预测误差分别减小63.51%和6.90%,10帧的总误差分别减小50.00%和4.89%。实验结果表明,该方法无论是运动合成质量还是运动预测精度都优于不进行初始隐状态估计的方法;它通过准确估计基于RNN的人体运动模型的首帧隐状态可提升运动合成的质量,并且为实时安全监测中的动作识别模型提供可靠的数据支持。  相似文献   

3.
运动人体识别模式识别领域的研究热点。目标在运动过程中产生的时间域和空间域的形变可提供重要的识别信息。本文提出一种基于统计形状分析的识别方法,用Kendall形状模型来描述帧间提取的人体轮廓,并应用隐马尔科夫模型(HMM)来捕捉目标时空域上的形变信息。由于传统HMM框架下,隐藏状态与训练数据相互正交,给学习过程带来很大困难。由此提出一种非参数HMM模型,用非参数核密度估计算法来学习观测概率分布,以补偿随机隐藏状态造成的不确定性,优化了HMM训练过程。最后对此方法进行了实验分析。  相似文献   

4.
针对单一特征值表征能力差的情况,根据小波变换的多分辨分析思想,采用基于多种母小波的多特征融合的特征提取方法对表面肌电信号进行特征提取。本实验对十名测试人员进行肌电信号的采集,对日常生活中的四个基本下肢动作进行测试。首先,分别基于DB、Dmey和Bior三种不同的母小波,采用离散小波变换通过不同的分析方法对表面肌电信号进行多尺度分解。然后,通过分析发现,不同肌肉在不同特征提取方式下表征效果存在差异,为了结合不同特征方式的特点对基于不同小波基的特征值进行融合分析并比较。最后,将特征值分别输入到Elman神经网络和BP神经网络进行模式识别并比较分析。实验结果表明:通过对不同特征值进行识别比较,融合处理的特征值可以达到98.7%的识别率,并且,BP神经网络相较于Elman神经网络识别效果更好。  相似文献   

5.
面向人体惯性运动捕捉系统,提出一种基于长短期记忆网络(LSTM)的人体运动模式识别方法。设计1个包含2层LSTM层的深度学习神经网络对人体三维加速度信息进行自动特征提取并对多类运动模式进行时序建模,从而实现对运动模式的快速实时识别。实验基于WISDM公开数据集,对人体右腿前口袋部位的三维加速度信息进行分析。验证模型识别人体慢跑、步行、坐、站、上楼、下楼运动过程的准确率为97.5%,并通过对比实验验证了该方法的有效性, 为基于移动设备及可穿戴设备的人体运动识别研究提供了一个可行的方法。  相似文献   

6.
针对传统人体姿态识别数据采集易受环境干扰、难以解决人体运动姿态的相似性和 人体运动执行者的特征差异性等问题,提出一种基于少量关键序列帧的人体姿态识别方法。首先 对原有运动序列进行预选,通过运动轨迹取极值的方法构造初选关键帧序列,再利用帧消减算法 获取最终关键帧序列;然后对不同人体姿态分别建立隐马尔科夫模型,利用 Baum-Welch 算法计 算得到初始概率矩阵、混淆矩阵、状态转移矩阵,获得训练后模型;最后输入待测数据,应用前 向算法,得到对于每个模型的概率,比较并选取最大概率对应的姿态作为识别结果。实验结果表 明,该方法能够有效的选取原始运动序列的关键帧,提高人体姿态识别的准确性。  相似文献   

7.
提出并实现一种基于移动设备的用户运动行为的检测算法.在用户随身携带移动设备的情况下,算法就可以根据移动设备中的三轴加速度数据,判别出来用户的行为状态.算法综合分析了加速度传感器数据的时域和频域特性,并通过方向无关性和步幅处理,进一步提高算法的适应性.算法对所抽取21个运动特征值进行了主成分分析,找出了11个主要特征成分,然后使用这些主成分对运行数据进行识别分类.提高了算法准确度,并降低了算法的时间和空间复杂度.在对分类算法综合分析和比较后,J48判决树算法被采纳.算法还根据人类运动的习惯和特性,对特性分类并计算分类的结果,再采用隐式Markov模型进行处理,进一步提高识别的准确度.对多人、多状态数据的实验表明,这种综合方法具有较高的识别准确度和适应性,在对多人多次实际运动数据的处理中,正确识别率可以达到96.13%.  相似文献   

8.
基于运动传感器的手势识别   总被引:1,自引:0,他引:1  
为了使手势交互较少受到视角和光线的限制,提出利用可穿戴传感器作为输入设备和机器学习算法相结合进行手势识别的方法.通过采集加速度仪和地磁仪的数据,然后进行预处理、特征提取和特征选择,最终由隐马尔科夫模型进行手势分类和识别.为验证方法的有效性,设计实现了一个原型系统进行识别和对比实验.实验结果表明,该方法可以实时有效地对手...  相似文献   

9.
为了满足主动康复训练和人机交互等复杂应用场景对多样性的人手运动模式识别需求,提出了一种基于多通道表面肌电信号sEMG小波包分解特征的人手动作模式识别方法。通过实验对比分析,确定了最佳采样布局方案,通过采集前臂表面肌电信号,设计了基于数字滤波器的肌电信号活动段自动标识算法,能快速准确完成样本动作标签的制作。以原始肌电信号的小波包分解系数作为特征向量训练分类器。通过对比不同隐含层节点数对分类器模式识别准确率的影响,最终确定BP神经网络模式分类器的所有结构参数。设计并训练完成了BP神经网络人手运动模式分类器。对9种手部运动的平均识别率达到93.6%,计算时间小于150ms。  相似文献   

10.
以一维空间自组织特征映射网络为识别模型,采用两级识别的方法,提出了一种基于自组织网络的数字识别方法,仿真结果表明此方法具有识别率高、识别速度快的优点,具有广阔的应用前景.  相似文献   

11.
一种改进的隐马尔可夫模型在语音识别中的应用   总被引:1,自引:0,他引:1  
提出了一种新的马尔可夫模型——异步隐马尔可夫模型.该模型针对噪音环境下语音识别过程中出现丢失帧的情况,通过增加新的隐藏时间标示变量Ck,估计出实际观察值对应的状态序列,实现对不规则或者不完整采样数据的建模.详细介绍了适合异步HMM的前后向算法以及用于训练的EM算法,并且对转移矩阵的计算进行了优化.最后通过实验仿真,分别使用经典HMM和异步HMM对相同的随机抽取帧的语音数据进行识别,识别结果显示在抽取帧相同情况下异步HMM比经典HMM的识别错误率低.  相似文献   

12.
基于HMM方法的银行票据自动识别   总被引:2,自引:0,他引:2  
利用隐态马尔可夫模型(HMMs),对银行票据中金额的大小写数据识别问题进行了研究.主要内容包括建立新颖的文字分刻算法;设计HMM训练和识别算法.在HMM系统中,将使用频率比较高的手写体错别字和同音字作为不同的字符类来处理;同时在HMM的训练过程中,提出了平滑参数的新方法.实验结果表明,该方法在实践中是可行的,在银行票据自动识别中有很好的应用前景.  相似文献   

13.
将隐马尔可夫模型(HMM)与小波神经网络(WNN)相结合,提出了一种基于心音信号的身份识别方法。该方法首先利用HMM对心音信号进行时序建模,并计算出待识别心音信号的输出概率评分;再将此识别概率评分作为小波神经网络的输入,通过小波神经网络将HMM的识别概率值进行非线性映射,获取分类识别信息;最后根据混合模型的识别算法得出识别结果。实验采集80名志愿者的160段心音信号对所提出的方法进行验证,并与GMM模型的识别结果进行了对比,结果表明,所选方法能够有效提高系统的识别性能,达到了比较理想的识别效果。  相似文献   

14.
We propose a model structure with a double-layer hidden Markov model (HMM) to recognise driving intention and predict driving behaviour. The upper-layer multi-dimensional discrete HMM (MDHMM) in the double-layer HMM represents driving intention in a combined working case, constructed according to the driving behaviours in certain single working cases in the lower-layer multi-dimensional Gaussian HMM (MGHMM). The driving behaviours are recognised by manoeuvring the signals of the driver and vehicle state information, and the recognised results are sent to the upper-layer HMM to recognise driving intentions. Also, driving behaviours in the near future are predicted using the likelihood-maximum method. A real-time driving simulator test on the combined working cases showed that the double-layer HMM can recognise driving intention and predict driving behaviour accurately and efficiently. As a result, the model provides the basis for pre-warning and intervention of danger and improving comfort performance.  相似文献   

15.
消除溢出问题的精确Baum-Welch算法   总被引:4,自引:0,他引:4       下载免费PDF全文
Baum-Welch算法是在语音领域中用于HMM(hidden Markov model)模型参数训练的最基本方法之一.但它在多样本训练时存在着严重的上、下溢问题,需要不断地人工介入来调整中间参数.该文提出了一种新的能消除上、下溢问题的Baum-Welch改进算法.该算法不但摆脱了人工介入,保证了计算的精度,而且不会带来过大的计算和存储要求.实验结果表明了这种新算法的有效性.  相似文献   

16.
针对语音驱动人脸动画中如何生成随语音运动自然呈现的眨眼、抬眉等表情细节以增强虚拟环境的沉浸感的问题,提出一种可以合成表情细节的语音驱动人脸动画方法.该方法分为训练与合成2个阶段.在训练阶段,首先对富有表情的三维人脸语音运动捕获数据特征进行重采样处理,降低训练数据量以提升训练效率,然后运用隐马尔可夫模型(HMM)学习表情人脸语音运动和同步语音的关系,同时统计经过训练的HMM在训练数据集上的合成余量;在合成阶段,首先使用经过训练的HMM从新语音特征中推断与之匹配的表情人脸动画,在此基础上,根据训练阶段计算的合成余量增加表情细节.实验结果表明,文中方法比已有方法计算效率高,合成的表情细节通过了用户评价验证.  相似文献   

17.
基于隐马尔可夫模型的运动目标轨迹识别 *   总被引:4,自引:1,他引:3  
引入改进的隐马尔可夫模型算法,针对真实场景中运动目标轨迹的复杂程度对各个轨迹模式类建立相应的隐马尔可夫模型,利用训练样本训练模型得到可靠的模型参数;计算测试样本对于各个模型的最大似然概率,选取最大概率值对应的轨迹模式类作为轨迹识别的结果,对两种场景中聚类后的轨迹进行训练与识别。实验结果表明,平均识别率分别达到87.76 %和94. 19%。  相似文献   

18.
针对现有技术中电动汽车充电平台智能语音识别能力差的问题,设计了新型的电动汽车充电平台,该系统平台包括计算机网络终端、电网调度中心以及充电桩等,能够实现上层管理中心的语音识别,电路包括语音采集模块、语音辨别模块和控制驱动模块等,设计出基于UniSpeech-SDA80D51芯片的语音识别电路,提高了语音识别能力,并构建出隐马尔可夫模型(hidden Markov model,HMM)和人工神经元网络(artificial neural network,ANN)相融合的模型,实现了智能语音识别数据信息的挖掘与处理,进而增强了语音识别系统的性能。试验表明,该研究在不同噪音下的识别率,其中在20 dB的噪音下识别率为88.3%。该方法提高了语音识别和挖掘能力。  相似文献   

19.
SVM+BiHMM:基于统计方法的元数据抽取混合模型   总被引:3,自引:0,他引:3       下载免费PDF全文
张铭  银平  邓志鸿  杨冬青 《软件学报》2008,19(2):358-368
提出了一种SVM BiHMM的混合元数据自动抽取方法.该方法基于SVM(support vector machine)和二元HMM(bigram HMM(hidden Markov model),简称BiHMM)理论.二元HMM模型BiHMM在保持模型结构不变的前提下,通过区分首发概率和状态内部发射概率,修改了HMM发射概率计算模型.在SVM BiHMM复合模型中,首先根据规则把论文粗分为论文头、正文以及引文部分,然后建立SVM模型把文本块划分为元数据子类,接着采用Sigmoid双弯曲函数把SVM分类结果用于拟合调整BiHMM模型的单词发射概率,最后用复合模型进行元数据抽取.SVM方法有效考虑了块间联系,BiHMM模型充分考虑了单词在状态内部的位置信息,二者的元数据抽取结果得到了很好的互补和修正,实验评测结果表明,SVM BiHMM算法的抽取效果优于其他方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号