共查询到20条相似文献,搜索用时 78 毫秒
1.
基于通用背景-联合估计(UB-JE)的说话人识别方法 总被引:1,自引:1,他引:1
在说话人识别中,有效的识别方法是核心.近年来,基于总变化因子分析(i-vector)方法成为了说话人识别领域的主流,其中总变化因子空间的估计是整个算法的关键.本文结合常规的因子分析方法提出一种新的总变化因子空间估计算法,即通用背景—联合估计(Universal background-joint estimation algorithm,UB-JE)算法.首先,根据高斯混合—通用背景模型(Gaussian mixture model-universal background model,GMM-UBM)思想提出总变化矩阵通用背景(UB)算法;其次,根据因子分析理论结合相关文献提出了一种总变化矩阵联合估计(JE)算法;最后,将两种算法相结合得到通用背景—联合估计(UB-JE)算法.采用TIMIT和MDSVC语音数据库,结合i-vector方法将所提的算法与传统算法进行对比实验.结果显示,等错误率(Equal error rate,EER)和最小检测代价函数(Minimum detection cost function,MinDCF)分别提升了8.3%与6.9%,所提方法能够提升i-vector方法的性能. 相似文献
2.
说话人识别中的因子分析以及空间拼接 总被引:1,自引:0,他引:1
联合因子分析可以有效拟合混合高斯模型中的说话人和信道差异, 在说话人识别中得到广泛应用. 一般情况下, 该算法在对说话人和信道两个载荷矩阵进行联合估计时, 说话人残差矩阵无法发挥作用, 信道载荷矩阵的因子数不能提高. 本文提出说话人载荷矩阵、说话人残差载荷矩阵采用串行的训练模式, 在信道载荷矩阵训练中采用矩阵拼接的方法, 能够有效提高识别率; 在NIST SRE 2008年核心测试数据库的五个部分分别达到等错误率3.3%, 5.1%, 5.0%, 5.3%和5.0%. 相似文献
3.
4.
在基于因子分析的说话人识别中,提出串行训练载荷矩阵的方法.在载荷矩阵训练中,采用串行的方式训练得到说话人因子矩阵、对角阵(残差矩阵)和信道空间矩阵.在说话人注册中,将以上3个载荷矩阵拼接,采用联合估计的方法得到每个说话人的因子.采用这种策略可有效解决因子分析中的饱和问题.在NIST SRE 2006年核心测试数据库上等错误率能达到3.65%. 相似文献
5.
针对在双选信道下OFDM系统需要同时获取精确的载波偏移和信道状态信息, 而采用贝叶斯MAP算法进行联合载波频率偏移和信道状态估计复杂度过高的问题, 提出一种基于EM-MAP的联合CFO双选信道估计算法。首先利用基扩展模型解决信道状态由于快时变带来的可辨识问题, 然后引入期望最大化(EM)算法对系统的载波频偏和信道状态信息进行联合估计, 避免大规模的矩阵求逆, 降低算法复杂度。仿真结果表明, 该方法能获取与MAP算法相当的估计性能, 且大幅度降低了复杂度, 有效地解决了双选信道下进行联合估计复杂度过高的问题, 具有很好的实用性。 相似文献
6.
针对现实中训练数据不足的特点,在说话人建模时采用高斯混合模型-通用背景模型(Gaussian Markov Model-Uniform Background Model, GMM-UBM),主要从说话人识别模型的自适应方法和参数估计方法两个方面,研究如何提高说话人识别系统的识别率。在说话人识别模型自适应方面,改进传统的用最大后验概率 MAP (Maximum A Posterior Probability)得到说话人模型的方法,将语音识别中的最大似然线性回归MLLR (Maximum Likelihood Linear Regression)和基于特征音(EigenVoice, EV)的自适应方法,应用到说话人识别模型自适应当中,并将其与MAP方法进行比较。 相似文献
7.
《计算机学报》2014,(11)
零空间线性鉴别分析NLDA充分利用样本总类内离散度矩阵的零空间信息,能有效克服线性鉴别分析LDA的小样本问题.核方法通过非线性映射,将输入空间样本映射到高维特征空间,再在高维特征空间利用线性特征提取算法.因此,核方法属于非线性特征提取算法.文中结合LDA、NLDA和核方法的优点,引入了核零空间线性鉴别分析KNLDA,导出了KNLDA算法.该算法通过引入核函数,得到低维矩阵,有效避免了直接计算复杂的非线性映射函数,解决了高维类内离散度矩阵的维数灾难问题.同时,将KNLDA算法应用于人脸识别.基于ORL人脸数据库以及ORL与Yale混合人脸数据库的实验结果表明了KNLDA算法的有效性. 相似文献
8.
因子分析是一种在工业领域广泛使用的统计学方法. 在金融资产管理中, 因子分析通过对历史价格波动的极大似然估计推导自适应的统计学因子来生成风险模型. 与通过使用预先设定具有经济学含义的因子来生成风险模型的基本面因子模型相比, 通过因子分析生成的模型不仅更灵活, 还能发现在基本面模型中缺失的因子. 然而, 由于因子分析所生成模型中的统计学因子缺少可解释性, 因此当金融数据中存在显著噪音时容易过拟合. 针对中国股市数据的风险模型生成问题, 本文提出快速因子分析算法以及将基本面因子结合到因子分析中的挑选基本面因子的混合因子分析方法, 使风险模型同时在因子探索及模型可解释性上达到最优. 实验结果显示快速因子分析方法能够达到31倍以上的加速比, 且新混合因子分析方法能够增大人造数据集以及真实数据集上预测的对数似然估计值. 在真实数据集上, 新方法能最好够达到平均对数似然估计值12.00, 比因子分析构建模型的7.56大4.44, 并且两个算法均值差值的标准差为1.58, 表现出新方法能构建更准确的风险模型. 相似文献
9.
针对粒子群算法容易过早出现早熟收敛问题,提出一种改进的PSO算法。在当前粒子陷入局部最优时,该算法根据平均粒距对部分粒子以一定的概率进行变异,从而扩大粒子群的全局搜索能力。将改进的PSO算法用来训练支持向量机,并应用在说话人识别系统中。通过实验证明改进的PSO算法在收敛速度和识别精度上都得到了改善。 相似文献
10.
典型相关分析在人脸姿态估计中的应用 总被引:1,自引:0,他引:1
在单一物体角度估计中,典型相关分析(CCA)可以用来建立图像空间和角度空间的联系.基于人脸总体形状的相似性,提出了基于外观的人脸姿态估计方法.使用CCA建立姿态变化时人脸这一类物体的外观空间和姿态空间的关系.典型相关向量最大化人脸外观空间和姿态空间的相关性,张成了它们的相关子空间.在相关子空间中,通过线性回归的方法,估计未知姿态图像的角度.为了更好的处理外观空间的非线性问题,引入了该方法.在CUbiC FacePix数据库上的实验验证了这两种算法的有效性. 相似文献
11.
利用i-vector/PLDA模型进行说话人确认时,对于不定时间的语音,由于将长度归一化后的i-vector转化到PLDA模型时,伴随着不确定性的扭曲和缩放,影响识别率。本文通过对全变量空间矩阵T的列向量执行归一化,代替在PLDA模型上对i-vector进行长度归一化,避免因在i-vector上执行长度归一化,导致转移到PLDA模型上产生不良的扭曲。实验结果表明,该方法得到和长度归一化相似的效果,部分效果要优于长度归一化。 相似文献
12.
13.
The availability of multiple utterances (and hence, i-vectors) for speaker enrollment brings up several alternatives for their utilization with probabilistic linear discriminant analysis (PLDA). This paper provides an overview of their effective utilization, from a practical viewpoint. We derive expressions for the evaluation of the likelihood ratio for the multi-enrollment case, with details on the computation of the required matrix inversions and determinants. The performance of five different scoring methods, and the effect of i-vector length normalization is compared experimentally. We conclude that length normalization is a useful technique for all but one of the scoring methods considered, and averaging i-vectors is the most effective out of the methods compared. We also study the application of multicondition training on the PLDA model. Our experiments indicate that multicondition training is more effective in estimating PLDA hyperparameters than it is for likelihood computation. Finally, we look at the effect of the configuration of the enrollment data on PLDA scoring, studying the properties of conditional dependence and number-of-enrollment-utterances per target speaker. Our experiments indicate that these properties affect the performance of the PLDA model. These results further support the conclusion that i-vector averaging is a simple and effective way to process multiple enrollment utterances. 相似文献
14.
为了提高信道变化下说话人确认系统的识别率和鲁棒性,提出一种基于i-向量和加权线性判别分析的稀疏表示分类算法。首先借助于加权线性判别分析的信道补偿和降维性能,消除i-向量中信道干扰信息并降低i-向量的维数;紧接着在i-向量集上构建训练语音样本过完备字典矩阵,采用MAP算法求解测试语音在字典矩阵上的稀疏系数向量,最后利用稀疏系数向量重构测试语音样本,根据重构误差确定目标说话人。仿真实验结果验证了该算法的有效性和可行性。 相似文献
15.
多维数据的发布与分析可以产生巨大的价值,但在数据收集阶段时常发生隐私泄露的问题.传统的中心化差分隐私保护方法要求一个完全可信的第三方数据收集者来收集数据,但在现实中很难找到一个完全可信的第三方数据收集者.随着属性维度的增加,数据收集者的求精处理工作(联合分布的计算)也成了一个亟待解决的问题.针对上述问题提出一种适用于多值数据的本地化差分隐私保护算法(RR-LDP),引入一元编码和瞬时随机响应技术用来在数据收集阶段保护个人隐私,降低了通信开销;在满足LDP的情况下,结合期望最大化(EM)算法和LASSO回归模型,提出了高效的多维数据联合分布估计算法(LREMH).该算法用LASSO回归模型估计初始值,用EM算法进行迭代计算.理论分析和实验结果表明LREMH算法在精度和效率之间取得了平衡. 相似文献
16.
A novel model for Fisher discriminant analysis is developed in this paper. In the new model, maximal Fisher criterion values of discriminant vectors and minimal statistical correlation between feature components extracted by discriminant vectors are simultaneously required. Then the model is transformed into an extreme value problem, in the form of an evaluation function. Based on the evaluation function, optimal discriminant vectors are worked out. Experiments show that the method presented in this paper is comparative to the winner between FSLDA and ULDA. 相似文献
17.
李敬阳李锐王莉王晓笛 《数据采集与处理》2017,32(1):54-61
说话人聚类是说话人分离中的一个重要过程,然而传统的以贝叶斯信息准则作为距离测度的层次聚类方式,会出现聚类误差向上传递的情况。本文提出了一种逐级算法增强处理机制。当片段之间的最小贝叶斯信息准则距离超过设定的门限值时,或者类别个数到达一定程度时,将当前聚类结果作为初始类中心,通过变分贝叶斯迭代法重新对每个类别中的片段调优,最后再依据概率线性判别分析得分门限确定说话人个数。实验表明,本文方法在美国国家标准技术署08 summed测试集上,使得“类纯度”和“说话人纯度”比传统算法都有了一定提升,且使得说话人分离整体性能相对提升了27.6%。 相似文献
18.
为了解决电话语音说话人确认系统中信道非线性失真导致系统性能下降的问题,提出一种消除信道影响的特征映射方法.采用高斯混合模型建立语音模型,通过最大后验概率自适应某种信道的语音模型,两种模型间相应高斯类的差异描述了该信道对于不同语音的影响.由此得出信道映射规则进行参数补偿,消除训练和测试语音中不匹配的影响.在NIST 1999年和2004年男性说话人的数据库上进行的实验表明,此方法使系统的等错误率分别改善了14.7%和15.18%. 相似文献
19.
针对信道失配和统计模型区分性不足而导致话者确认性能下降问题,文中提出一种将因子分析信道失配补偿与支持向量机模型相结合的文本无关话者确认方法。在SVM话者模型前端采用高斯混合模型-背景模型(GMM-UBM)方法对语音特征参数进行聚类和升维,并利用因子分析(FA)方法,对聚类获得的超矢量进行信道补偿后作为基于SVM话者确认的输入特征,从而有效解决SVM用于文本无关话者确认的大样本、升维问题,以及信道失配对性能影响问题。在NIST 06数据库上实验结果表明,文中方法比未做失配补偿的GMM-UBM系统、GMM-SVM系统在等误识率上有50%以上的改善,比做了FA失配补偿的GMM-UBM系统也有15。8%的改善。 相似文献
20.
EM算法是实现极大似然估计的一种有效方法,主要用于非完全数据的参数估计。它通过假设隐变量的存在,极大地简化了似然方程;对于一些特殊的参数估计问题,利用EM算法也很容易实现。而极大似然估计是一种常用的参数估计方法,EM算法使其应用更加广泛。文章从应用者的角度出发,内容是自包含的。 相似文献