共查询到20条相似文献,搜索用时 78 毫秒
1.
高斯混合模型在语音转换中得到了广泛应用,但其随着模型阶数和特征维数的提高,估计参数的数目会急剧增加,使参数估计的准确性和稳定性大为降低。本文提出将特征向量去相关之后,将向量之间的转换转化为标量之间的转换,以此来减少估计参数个数。实验表明,采用该方法的语音转换算法能有效改善转换语音的性能。 相似文献
2.
3.
4.
针对传统谱算法在数据降维计算复杂度高的缺点,提出一种基于高斯过程隐变量模型的图像数据降维算法。首先,通过高斯过程(Gaussian Process,GP)建立图像数据的概率模型,得到图像数据的隐变量模型;其次,利用概率最大化原则得到最优超参数,通过最优超参数求取最优数据降维结果;最后,实现图像数据降维。选取Yale,ORL两类数据集与传统算法进行人脸识别对比实验,实验结果表明:所提出的算法针对图像数据降维问题有较好的效果,结合支持向量机算法,可有效地对人脸图像进行识别,且有较高的识别率,从而体现出算法对高维数据降维的准确性。 相似文献
5.
语音转换技术主要应用于计算机语音合成、计算机语音翻译、语音编辑、广播及多媒体等方面。高斯混合模型(GMM)是目前语音转换的主流方法,但它的最大不足是会导致转换频谱的过平滑。其中GMM转换函数中的均值项和相关项共同导致了过平滑现象,并且均值项的影响更大。为此提出了结合码本映射法和GMM方法的修正均值法,实验表明,使用修正均值法能够有效抑制过平滑问题。改善转换性能。 相似文献
6.
基于学习的群体动画生成技术研究 总被引:1,自引:0,他引:1
为了降低群体动画中生成大量自然而又相似的人体运动的难度和复杂性,研究了一种基于学习的群体动画生成技术。该技术首先通过建立基于高斯过程隐变量模型和隐空间动态模型的运动姿势学习模型,将高维运动姿势映射到低维隐空间中,并在低维隐空间对相邻姿势的动态演化进行建模;然后通过对已有运动数据的学习来获得组成该运动的姿势的概率分布,再通过隐空间中的动态预测和Hybrid Monte Carlo采样来得到符合给定概率分布的隐轨迹;最后通过姿势重构来得到与原运动非常相似但又不同的一系列自然的运动,以产生群体动画,从而避开了传统的基于几何和物理约束的逆运动方法固有的困难和复杂性。 相似文献
7.
声道归一化是语音识别中说话人自适应的方法之一,在噪声环境下对其进行了研究并做了一系列的实验.在实现过程中,首次在噪声环境下采用了基于单高斯混合模型选择弯折因子的方法,并取得了良好的结果.实验基于AURORA语音数据库,并用其所带的汽车噪声环境下的测试集对模型进行了识别验证.实验结果表明,采用声道归一化后的识别结果在各个噪声下均比原来有不同程度的改善,迭代训练能改进单轮声道归一化的结果,最佳结果出现在迭代训练的第三轮.噪声环境下基于一个高斯混合模型选择的弯折因子相比其他高斯混合模型选择的弯折因子,句子平均识别率提高了近1.68%.经过声道归一化后的性别独立模型的识别结果能接近于未经声道归一化后的性别依赖模型的识别结果,如果训练数据充分,声道归一化后的性别独立模型的识别结果能更好. 相似文献
8.
高斯过程隐变量模型(GPLVM)作为一种无监督的贝叶斯非参数降维模型,无法有效利用数据所包含的语义标记信息,同时其建模过程中假设观测变量的各特征相互独立,忽略了特征之间的空间结构信息。为解决上述问题,采用图像池化操作获得不同尺度的特征表示,利用线性投影方式将不同尺度的图像投影到低维隐空间进行特征融合,并将融合特征和数据标记分别作为输入和输出,构建多尺度多核高斯过程隐变量模型(MSMK-GPLVM),通过图像数据与数据标记的关联实现模型监督学习,同时对GPLVM和线性投影权重矩阵进行联合学习以提高分类性能。实验结果表明,MSMK-GPLVM能够有效利用图像空间结构信息和语义标记信息,相比其他隐变量模型具有更强的数据降维和分类能力。 相似文献
9.
EM算法是高斯混合模型参数估值的常用方法,该算法有局部收敛的特性,易造成模型的参数估计对于初值较为敏感,往往得到一个局部的最优值.为了对EM算法进行优化,文中将具有全局寻优和并行搜索特性的遗传算法与EM算法相结合,对其加以改进,并用到语音转换过程之中,最后通过仿真实验分析了算法的性能,结果表明使用优化算法得出的高斯混合模型所转换出来的语音,相对于传统EM估计算法得出的高斯混合模型所转换出来的语音,具有较小的失真测度值,证明使用该优化算法能够改善转换后的语音质量. 相似文献
10.
11.
一种改进的隐马尔可夫模型在语音识别中的应用 总被引:1,自引:0,他引:1
提出了一种新的马尔可夫模型——异步隐马尔可夫模型.该模型针对噪音环境下语音识别过程中出现丢失帧的情况,通过增加新的隐藏时间标示变量Ck,估计出实际观察值对应的状态序列,实现对不规则或者不完整采样数据的建模.详细介绍了适合异步HMM的前后向算法以及用于训练的EM算法,并且对转移矩阵的计算进行了优化.最后通过实验仿真,分别使用经典HMM和异步HMM对相同的随机抽取帧的语音数据进行识别,识别结果显示在抽取帧相同情况下异步HMM比经典HMM的识别错误率低. 相似文献
12.
With the increasing demands of visual surveillance systems, human identification at a distance has gained more attention from the researchers recently. Gait analysis can be used as an unobtrusive biometric measure to identify people at a distance without any attention of the human subjects. We propose a novel effective method for both automatic viewpoint and person identification by using only the silhouette sequence of the gait. The gait silhouettes are nonlinearly transformed into low-dimensional embedding by Gaussian process latent variable model (GP-LVM), and the temporal dynamics of the gait sequences are modeled by hidden Markov models (HMMs). The experimental results show that our method has higher recognition rate than the other methods. 相似文献
13.
14.
针对现有技术中电动汽车充电平台智能语音识别能力差的问题,设计了新型的电动汽车充电平台,该系统平台包括计算机网络终端、电网调度中心以及充电桩等,能够实现上层管理中心的语音识别,电路包括语音采集模块、语音辨别模块和控制驱动模块等,设计出基于UniSpeech-SDA80D51芯片的语音识别电路,提高了语音识别能力,并构建出隐马尔可夫模型(hidden Markov model,HMM)和人工神经元网络(artificial neural network,ANN)相融合的模型,实现了智能语音识别数据信息的挖掘与处理,进而增强了语音识别系统的性能。试验表明,该研究在不同噪音下的识别率,其中在20 dB的噪音下识别率为88.3%。该方法提高了语音识别和挖掘能力。 相似文献
15.
提出一种基于轨迹分段主题模型的异常行为检测方法。为了解决跟踪偏差引起的轨迹不连续问题,首先使用模糊聚类算法对所有的轨迹进行全局聚类,然后对每一类轨迹采用分段采样的方式对段内轨迹点使用主题模型LDA进行局部聚类;以最大概率的轨迹点作为视觉单词,每类轨迹表示成一系列视觉单词的集合,在此基础上建立局部隐马尔科夫模型HMM;最后通过轨迹匹配的方法进行异常轨迹识别。在CAVIAR数据库上的实验结果表明,该算法能识别多种异常行为,提高了异常行为检测的准确率。 相似文献
16.
提出一种捆绑子空间分布隐马尔可夫模型的训练方法。该方法利用多变量相关系数将语音信号的特征向量进行子空间划分;利用k均值算法捆绑特征向量子空间的高斯分布,得到子空间高斯分布的原型,减少模型的参数。通过实验,用该方法训练的捆绑子空间隐马尔可夫模型,不仅提高了识别器的精确度和识别速度,而且节省了存储空间。 相似文献
17.
基于HMM方法的银行票据自动识别 总被引:2,自引:0,他引:2
利用隐态马尔可夫模型(HMMs),对银行票据中金额的大小写数据识别问题进行了研究.主要内容包括建立新颖的文字分刻算法;设计HMM训练和识别算法.在HMM系统中,将使用频率比较高的手写体错别字和同音字作为不同的字符类来处理;同时在HMM的训练过程中,提出了平滑参数的新方法.实验结果表明,该方法在实践中是可行的,在银行票据自动识别中有很好的应用前景. 相似文献
18.
基于SVM-HMM混合模型的说话人确认 总被引:8,自引:0,他引:8
提出一个文本无关的说话人确认的算法。该算法将支持向量机(SVM)的输出通过Sigmoid函数和高斯模型转化为概率,并作为隐式马尔可夫模型(HMM)中各个隐状态的输出概率。由于HMM适于处理连续信号,SVM适于处理分类问题;同时,HMM更多地表达了类别内部的相似性,而SVM则很大程度上反映了类别间的差异,因而根据两者不同的侧重点,使其组合获得了很好的效果。 相似文献
19.
计算机系统入侵检测的隐马尔可夫模型 总被引:32,自引:0,他引:32
入侵检测技术作为计算机安全技术的一个重要组成部分,现在受到越来越广泛的关注,首先建立了一个计算机系统运行状况的隐马尔可夫模型(HMM),然后在此模型的基础上提出了一个用于计算机系统实时异常检测的算法,以及该模型的训练算法。这个算法的优点是准确率高,算法简单,占用的存储空间很小,适合用于在计算机系统上进行实时检测。 相似文献
20.
驾驶辅助系统被认为是解决交通安全问题的有效手段, 开发驾驶辅助系统的基础是对车辆的行为进行准确的识别, 以应用于车辆安全预警, 路径规划, 智能导航等方面. 目前存在的基于支持向量机模型, 隐马尔科夫模型, 卷积神经网络等行为识别方法还存在计算量与精度平衡的问题. 本文结合了隐马尔科夫模型与高斯混合模型, 提出了高斯混合隐马尔科夫模型, 利用美国联邦公路管理局NGSIM数据集对此方法进行了实验验证, 结果表明该方法对自由换道行为识别具有较高的精度. 本文还对高斯混合隐马尔科夫模型的实验参数进行了优化, 以期达到最好的识别效果, 为未来智能驾驶的车辆行为识别提供了参考. 相似文献