首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypropylene (PP)/ethylene–propylene-diene monomer (EPDM)/zinc dimethacrylate (ZDMA) blends with remarkable toughness and extensibility were successfully prepared via peroxide dynamical vulcanization. A unique structure with the EPDM particles surrounded by a transition zone containing numerous polymerized ZDMA (PZDMA) nano-particles was observed for the first time by using transmission electron microscopy (TEM) examination, which contributed to the dramatically increase of Izod impact strength. Dynamic mechanical analysis (DMA) confirmed that the possible PZDMA graft products resulted from peroxide dynamical vulcanization improved the compatibility between EPDM and PP phases. The specific morphology of the PP/EPDM/ZDMA blends indicated that ZDMA can lead to size reduction and good distribution uniformity of the crosslinked rubber particles and the increase of adhesion between PP matrix and EPDM phases during deformation. The synergic effect of the increase in the effective volume of the EPDM phase, the improved compatibility and adhesion between EPDM and PP phases and the deformation of those fine rubber particles is believed to result in the remarkable high toughness and extensibility of the PP/EPDM/ZDMA blends. Particularly for the PP/EPDM ratio of 70/30, the PP/EPDM/ZDMA (70/30/9, w/w/w) ternary blends with the Izod impact strength nearly 2 times higher than PP/EPDM (70/30, w/w) binary blends and 15–20 times higher than PP are achieved; besides, the elongation at break of PP/EPDM/ZDMA ternary blends is 4–5 times higher than that of PP/EPDM binary blends.  相似文献   

2.
Thermoplastic elastomers (TPEs) were prepared from ternary blends of ethylene propylene diene poly methylene rubber (EPDM), isotactic polypropylene (PP), and low loadings (5–10 phr) of different types of interfacial phase modifiers (like maleated EPDM, styrene-ethylene-co-butylene-styrene block copolymer, and maleated PP). These showed much improved physico-mechanical properties compared to the binary blend of EPDM-PP. The effects of non-polar paraffin oil and polar di-octyl phthalate liquid additives (5–20 phr) were investigated in these phase-modified ternary and binary EPDM-PP blends. Only 5 phr of liquid additives provided synergistic improvement in physical properties (maximum stress, modulus, and elongation at break) and generated improved finer morphology of the ternary blends as revealed from scanning electron and atomic force microscopy studies. Enhanced physical properties and dynamic mechanical properties of these blends were explained with the help of better phase morphology and enhanced crystallinity of the blends.  相似文献   

3.
This study investigates the effect of cross-linking on morphology and phase inversion of EPDM/PP blends. Several EPDM/PP blends without and with cross-linking agent were prepared in a Haake batch mixer under constant conditions. The morphology was studied by electronic microscopy (SEM and TEM), and cross-linking was followed by EPDM gel content and swelling. The results showed that the position of the phase inversion region is essentially governed by composition, being independent of the viscosity ratio of the EPDM/PP blend. The TPVs’ morphology of the EPDM/PP blend, with 70 and 50 wt% of PP, consists of EPDM cross-linked particles dispersed in the PP matrix. For EPDM-rich composition (30 wt% of PP), the TPVs’ morphology appears to be co-continuous. Even though dynamic vulcanisation of the rubber phase always improves the dispersion of the EPDM phase, complete phase inversion (from fully dispersed PP in the EPDM matrix to EPDM fully dispersed in the PP matrix) was achieved only with low viscosity EPDM.  相似文献   

4.
The fracture mechanics investigation of the dynamically vulcanized EPDM and PP/ionomer ternary blends was performed in terms of the J-integral by measuring fracture energy via the locus method. The ternary blends consisting of EPDM, PP and ionomer were prepared in a laboratory internal mixer by blending and vulcanizing simultaneously. Vulcanization was performed with dicumyl peroxide (DCP) and the composition of EPDM and PP was fixed at 50/50 by weight. Two kinds of poly(ethylene-co-methacrylic acid) (EMA) ionomers were used. The J-integral values at crack initiation, J c, of the dynamically vulcanized EPDM and PP/EMA ionomer ternary blends were affected by the cation types (Na+ or Zn2+) and contents (5–20 wt%) of the added EMA ionomers. The ternary blend containing 20 wt% zinc-neutralized EMA ionomer and 1.0 p.h.r. DCP showed the highest J c values of the blends. The results have been discussed with regard to the fracture topology observed by scanning electron microscopy (SEM).  相似文献   

5.
用动态硫化法制备的PP/EPDM共混型热塑性弹性体的性能明显优于直接共混型PP/EPDM热塑性弹性体,这是由于模量低的EPDM柔性长链经化学交联后,强化对PP的增韧效果,而交联后又被扯断细化的EPDM的颗粒,改变了因EPDM相互缠结所导致的熔融粘度大,加工性能差的缺陷。制备PP/EPDM热塑性弹性体的关键是动态硫化,由于PP/EPDM共混物的动态硫化是一个融物理共混、化学引发交联和剪切细化分散为一体的复杂过程,材料的性能除决定于组成、组分性能和化学交联体系外,还强烈依赖于所采用的共混工艺方式及其条件。本章采用过氧化二异丙苯(DCP)作为硫化剂,研究了过氧化物用量对动态硫化PP(K8303)/EPDM共混物性能和形态的影响。  相似文献   

6.
Poly(phenylene sulfide) (PPS) was melt blended with Nylon66 and the mechanical properties and corresponding fracture morphologies were investigated. The thermal distortion temperature (HDT) of PPS/Nylon 66 blend showed that the inherent thermal stability of pure PPS can be maintained up to 30 wt% Nylon66, but then it started to decrease linearly thereafter to that of pure Nylon66 based on the rule of mixtures relationship. Tensile tests of PPS/Nylon66 blends at testing temperatures of –30, 25, 75, and 150°C showed that the maximum stress decreased up to 30 wt% Nylon66, and started to increase thereafter. Strain at break showed little change at low nylon content regardless of testing temperature, however, a large strain at break increase could be observed at more than 30 wt% Nylon66 and at 150°C testing temperature. At the same testing temperatures, the impact strength of PPS/Nylon66 blends was investigated, and it was found that an impact strength increase at all testing temperatures could be observed at more than 30 wt% Nylon66.  相似文献   

7.
通过严格控制工艺条件,得到了不同分散相含量和不同粒径的PP/EPDM/HDPE和PP/EPDM共混体。利用SEM分析了PP/EPDM/HDPE的结构特点,通过测量Izod缺口冲击强度,得到了PP/EPDM/HDPE的脆韧转变主曲线,证明其符合脆韧性转变规律;同时利用SEM照片,分析了主曲线不同区域的增韧机理。  相似文献   

8.
采用β成核的动态硫化iPP/EPDM共混物即热塑性硫化胶(TPV)改性聚丙烯,并与通用增韧剂聚烯烃弹性体(POE)、三元乙丙橡胶(EPDM)增韧聚丙烯进行比较,考察了增韧体系的力学性能、热性能和相形态.结果表明,随增韧剂含量的增加,增韧体系的拉伸屈服强度和弯曲模量均有所下降,而冲击强度提高.TPV改性体系的强度、模量和...  相似文献   

9.
PP/EPDM/CaCO_3三元共混体系的脆韧转变研究   总被引:12,自引:0,他引:12  
采用扫描电镜和材料力学性能试验方法研究了PP/EPDM/CaCO3三元体系中CaCO3的表面处理与其材料的缺口冲击韧性及产生脆韧转变现象之间的关系。实验结果及分析表明:体系中分散相颗粒周围向PP基体扩散、渗透或与之共结晶的EPDM部分是增韧PP的有效成分;较好的表面处理条件下,体系中加入较少量的EPDM即可使材料缺口冲击韧性和拉伸模量值同时达到较好水平。  相似文献   

10.
In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.  相似文献   

11.
将聚丙烯(PP)与官能化聚烯烃弹性体(POE-g-M AH)共混,制备出4种新型增韧改性剂,研究了PP的含量和种类对PBT/POE-g-M AH共混体系相形态和力学性能的影响。SEM观察发现,新型增韧改性剂作为分散相具有以POE-g-M AH为软壳、PP为硬核的包藏结构。随着高熔体流动指数PP(EPF 30R)含量的增加,软壳层厚度逐渐减小,包藏结构分散相的相畴尺寸略有减小,分布更加均匀。但添加低熔体流动指数PP(EPS30R)后,包藏结构分散相的相畴尺寸变大,分布不均匀。力学性能测试表明,适量高熔体流动指数PP与POE-g-M AH并用具有显著的协同增韧作用。与PBT/POE-g-M AH体系相比,在相同的增韧剂总用量时,共混物在保持超高韧性的同时,拉伸强度损失最小。  相似文献   

12.
The morphology and properties of HDPE blends with Zn-SEPDM and GR were studied through SEM and mechanical property test. The results show that as Zn-SEPDM/GR content amounts to 20%, the blend becomes an IPN in structure, and that a rather high impact and tensile strength of HDPE may be obtained after blending. The antistatic effect, the softening point,and HDT of the blend are higher as compared to HDPE/Zn-SEPDM/ZnSt (zinc stearate).The effect of Zn-SEPDM on the compatibility the morphology and properties of IPP blends were studied by DSC, TEM and mechanical properties test. The results show that as Zn-SEPDM content exceeds 20%. Zn-SEPDM in the blend becomes continuous and an abrupt change in impact strength is incurred there from. Owing to the incorporation of ionic groups into EPDM.the strong interactions betWeen the chains make both the impact and the tensile strength of IPP remarkably higher  相似文献   

13.
The effect of vapor grown carbon fiber (VGCF) on the morphology, crystallization and melting behaviors of isotactic polypropylene (iPP)/high density polyethylene (HDPE) blend have been studied by means of Scanning Electron Microscopy (SEM) and Differential Scanning Calorimeter (DSC). It is found that the addition of VGCF results in a dramatic change in the morphology of iPP/HDPE blends. The crystallization peak temperature and melting point of iPP are not altered significantly by the blending. However, the degrees of crystallinity of iPP in the blends are reduced. Compared with the unfilled blends, the crystallization peak temperatures of iPP increase dramatically for the composites. The isothermal crystallization behavior of iPP is further investigated. The analysis of the crystallization half time shows that the crystallization rate of iPP is reduced by the presence of HDPE melt, and is enhanced by carbon fibers. For the unfilled blends in which iPP is the major component, the Avrami exponent closes to 3, independent of the HDPE content. However, for the composites, the Avrami exponent varies with the composition in a rather complex manner. An explanation based on heterogeneous and homogeneous nucleation is supposed. The sharp changes in the crystallization and melting behaviors for the composites containing 30–35wt% HDPE correspond to the sudden change in the morphology of the two phases. It is supported by the observation of SEM and the electrical measurement.  相似文献   

14.
Craig Clemons 《Composites Part A》2010,41(11):1559-1569
Blends of polyethylene (PE) and polypropylene (PP) could potentially be used as matrices for wood–plastic composites (WPCs). The mechanical performance and morphology of both the unfilled blends and wood-filled composites with various elastomers and coupling agents were investigated. Blending of the plastics resulted in either small domains of the minor phase in a matrix of major phase or a co-continuous morphology if equal amounts of HDPE and PP were added. The tensile moduli and yield properties of the blends were clearly proportional to the relative amounts of HDPE and PP in the blends. However, the nominal strain at break and the notched Izod impact energies of HDPE were greatly reduced by adding as little as 25% of the PP. Adding an ethylene–propylene–diene (EPDM) elastomer to the blends, reduced moduli and strength but increased elongational properties and impact energies, especially in HDPE-rich blends. Adding wood flour to the blends stiffened but embrittled them, especially the tougher, HDPE-rich blends, though the reductions in performance could be offset somewhat by adding elastomers and coupling agents or a combination of both.  相似文献   

15.
借助扫描电子显微镜观察了PP/EPDM共混物注射成型样条的冲击断口形态以及该共混物注射产条的芯-壳结构特征,研究了EPDM基体中的各向异性分布,不同冲击强度样品的断口形态以胶芯-壳结构和EPDM的各向异性分布对断口形态和冲击性能的影响。  相似文献   

16.
The mechanical properties viz.impact strength and tensile modulus of polypropylene (PP) containing two different types of calcium sulphate (prepared by in situ method under controlled conditions in a polymer matrix i.e. polyethylene oxide in the composition range 0–25 wt% of filler were studied. Increase of impact strength together with high crystallinity and improved tensile modulus was observed in one of the grades of CaSO4 filled composite as compared to pure PP. This could be associated with the long needle shaped CaSO4 crystals and the change in the structure and morphology induced by the same in the PP matrix.  相似文献   

17.
Polypropylene (PP)/Polyamide6 (PA6)/Ethylene–Propylene–Diene-Monomer (EPDM) (70/15/15) ternary polymer blends compatibilized with Maleic-anhydride grafted EPDM (EPDM-g-MA) were prepared by melt blending using a twin screw extruder (TSE). Effect of TSE processing parameters including barrel temperature, screw speed and blending sequence on the mechanical properties of ternary polymer blends was investigated by application of Taguchi experimental design methodology. Three different levels of barrel temperature (220 °C, 230 °C, 240 °C), screw speed (90 rpm, 120 rpm, 150 rpm) and blending sequence (nominated as: S1, S2 and S3) were selected. The response variables were tensile properties and impact strength of the prepared samples which are directly affected by the blend microstructure. Investigation of the statistical–mathematical analysis results performed by the software depicted that the optimum processing conditions for the ternary blends investigated here, to achieve balanced tensile and impact properties, are 220 °C, 150 rpm and S2 blending sequence.  相似文献   

18.
The surface elastic moduli of silica-reinforced rubbers and rubber blends were investigated by atomic force microscopy (AFM)-based HarmoniX material mapping. Styrene–butadiene rubbers (SBR) and ethylene–propylene–diene rubbers (EPDM) and SBR/EPDM rubber blends with varying concentrations of silica nanoparticles (0, 5, 10, 20, 50 parts per hundred rubber, phr) were prepared to investigate the effect of different composition on the resulting morphology, filler distribution and elastic moduli of a specific rubber or rubber blend sample. For SBR, the elastic modulus values varied from 0.5 MPa for unfilled SBR to 5 MPa for 50 phr reinforced SBR with the increase in the concentration of filler. For EPDM, the corresponding values increased from 1.4 MPa for unfilled EPDM to 4.5 MPa for 50 phr reinforced EPDM. Local stiff and soft domains in silica-reinforced SBR and EPDM rubbers and rubber blends were identified by HarmoniX AFM imaging. While the stiff silica particles show modulus values as high as 2 GPa, the rubber matrix reveals modulus values in the range of ca. 30 MPa for the rubber blends to ca. 300 MPa for the unfilled rubbers. The lower value of elastic modulus of the EPDM phase in the blend, compared to the blank EPDM compound can be attributed to the presence of Sunpar oil in the compound which has a very good affinity with EPDM and decreases the rubber modulus. The elastic moduli maps revealed an increase of the areal fraction of silica particles showing an intrinsic surface modulus value with rising silica content in the compound preparation mixture. HarmoniX AFM measurements revealed the formation of larger silica aggregates in EPDM in contrast to SBR where isolated silica particles were observed. For silica-reinforced rubber blends a phase separation into a soft (ca. 40 MPa) and a significantly harder phase could be observed (ca. 500 MPa–1.5 GPa) indicating the incorporation of silica particles in the SBR phase. Using HarmoniX AFM imaging significantly higher surface elastic moduli were observed compared to those obtained by bulk tensile testing. Possible reasons for the observed differences between bulk modulus values and those measured by AFM are discussed in detail, including the aspect of different averaging procedures like inherent to surface probing by AFM versus bulk tensile testing, different filler distributions in SBR and EPDM and the AFM modulus calibration procedures.  相似文献   

19.
高密度聚乙烯官能化和增容作用的研究   总被引:1,自引:2,他引:1       下载免费PDF全文
通过红外光谱分析、与水的接触角测定、力学性能测定,研究了空气中不同环境温度下紫外线辐照对高密度聚乙烯(HDPE)结构与性能的影响以及紫外辐照官能化HDPE对HDPE/聚乙烯醇(PVA)纤维体系的增容作用。实验结果表明,紫外辐照后,HDPE分子链上引入了—C(C=O)CH3,—CH2C(=O)CH2—,—C(=O)O—等含氧官能团,实现了HDPE的官能化。提高环境温度可提高HDPE官能化速度。紫外辐照后,HDPE的杨氏模量和拉伸屈服强度提高,但断裂伸长率和缺口冲击强度下降。官能化HDPE对HDPE/PVA纤维共混体系有增容作用,增容后的共混物的拉伸屈服强度提高和缺口冲击强度得到提高。  相似文献   

20.
过氧化二异丙苯(DCP)能有效降解PP;当DCP用量为2‰(质量分数)时,PP/EPDM共混物的冲击强度较高。共混物的相形态结构表明,EPDM橡胶粒子均匀地分散在基体中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号