共查询到20条相似文献,搜索用时 0 毫秒
1.
Simon KW Roberts PC Vespremi MJ Manchen S Schmelz EM 《Molecular nutrition & food research》2009,53(3):332-340
2.
BACKGROUND: Mushroom poisoning is the main cause of human death by food poisoning in China. Most lethal mushrooms belong to the Amanita genus, whose amatoxins are responsible for the death of humans. Amanita exitialis is a lethal white mushroom commonly found in Guangdong Province, China. In this study the contents and distribution of the major amatoxins in different tissues and development stages of A. exitialis were systematically analysed. RESULTS: The amatoxin contents and distribution in six different mushroom tissues of A. exitialis were analysed by reverse phase high‐performance liquid chromatography. The highest concentrations of amatoxins were found in the gills and pileus, followed by the stipe and annulus, with the lowest concentrations in the volva and spores. Further analysis of mushrooms in different development stages showed that the amatoxin content was relatively high and steady during early development, reached its peak when the fruit body was in the vigorous growth stage and then decreased sharply when the mushroom entered its mature stage. Furthermore, the α‐amanitin/β‐amanitin ratio varied significantly in different tissues but remained constant within a specific tissue throughout development. CONCLUSION: The contents and distribution of amatoxins in different tissues and development stages of A. exitialis are markedly different. The distribution of α‐amanitin and β‐amanitin varies in different tissues but remains constant throughout development. Copyright © 2012 Society of Chemical Industry 相似文献
3.
4.
We have engineered recombinant yeast to perform stereospecific hydroxylation of dehydroepiandrosterone (DHEA). This mammalian pro-hormone promotes brain and immune function; hydroxylation at the 7alpha position by P450 CYP7B is the major pathway of metabolic activation. We have sought to activate DHEA via yeast expression of rat CYP7B enzyme. Saccharomyces cerevisiae was found to metabolize DHEA by 3beta-acetylation; this was abolished by mutation at atf2. DHEA was also toxic, blocking tryptophan (trp) uptake: prototrophic strains were DHEA-resistant. In TRP(+) atf2 strains DHEA was then converted to androstene-3beta,17beta-diol (A/enediol) by an endogenous 17beta-hydroxysteroid dehydrogenase (17betaHSD). Seven yeast polypeptides similar to human 17betaHSDs were identified: when expressed in yeast, only AYR1 (1-acyl dihydroxyacetone phosphate reductase) increased A/enediol accumulation, while the hydroxyacyl-CoA dehydrogenase Fox2p, highly homologous to human 17betaHSD4, oxidized A/enediol to DHEA. The presence of endogenous yeast enzymes metabolizing steroids may relate to fungal pathogenesis. Disruption of AYR1 eliminated reductive 17betaHSD activity, and expression of CYP7B on the combination background (atf2, ayr1, TRP(+)) permitted efficient (>98%) bioconversion of DHEA to 7alpha-hydroxyDHEA, a product of potential medical utility. 相似文献
5.
Eom SH Lee SH Yoon NY Jung WK Jeon YJ Kim SK Lee MS Kim YM 《Journal of the science of food and agriculture》2012,92(10):2084-2090
BACKGROUND: In an effort to develop alternative therapeutic agents, strong inhibitory activity against α‐glucosidase and α‐amylase was detected in Eisenia bicyclis methanolic extract. RESULTS: In this study, two phlorotannins were isolated from E. bicyclis and characterised by chromatography and nuclear magnetic resonance. The active substances were identified as fucofuroeckol A (FF) and dioxinodehydroeckol (DD). To the authors' knowledge, this is the first report of the identification of these substances in E. bicyclis. However, to date, no antidiabetic activity of FF and DD has been reported. Both phlorotannins demonstrated significant inhibitory activity against α‐glucosidase and α‐amylase. FF showed potent antidiabetic activity, with IC50 values of 131.34 nmol L?1 against α‐glucosidase and 42.91 µmol L?1 against α‐amylase. The corresponding IC50 values of DD were 93.33 nmol L?1 and 472.7 µmol L?1. Furthermore, kinetic analysis revealed that FF and DD exhibited non‐competitive inhibitory activity against α‐glucosidase. CONCLUSION: These results suggest that FF and DD may be candidates for the development of an antidiabetic pharmaceutical agent or food additive. Copyright © 2012 Society of Chemical Industry 相似文献
6.
Glycoalkaloids (α-solanine and α-chaconine) are naturally occurring toxic compounds in potato tuber (Solanum tuberosum L.) that cause acute intoxication in humans after their consumption. Present research was conducted to evaluate α-chaconine, α-solanine, and total glycoalkaloids (TGAs) contents in the peel and flesh portions by high-performance liquid chromatography method in selected Pakistani potato cultivars. The α-solanine content varies 45.98 ± 1.63 to 2742.60 ± 92.97 mg/100 g of dry weight (DW) in peel and from 4.01 ± 0.14 to 2466.56 ± 87.21 mg/100 g of DW in flesh. Similarly, α-chaconine content varied from 4.42 ± 0.16 to 6818.40 ± 211.07 mg/100 g of DW in potato peel and from 3.94 ± 0.14 to 475.33 ± 16.81 mg/100 g DW in flesh portion. The TGA concentration varied from 177.20 ± 6.26 to 5449.90 ± 192.68 mg/100 g of DW in peel and from 3.08 ± 0.11 to 14.69 ± 0.52 mg/100 g of DW in flesh portion of all the potato cultivars tested. All the potato cultivars contained lower concentration of TGA than the limits recommended as safe, except 2 cultivars, that is FD8-3 (2539.18 ± 89.77 mg/100 g of DW) and Cardinal (506.16 ± 17.90 mg/kg). The dietary intake assessment of potato cultivars revealed that Cardinal, FD 35-36, FD 8-3, and FD 3-9 contained higher amount of TGA in whole potato, although FD 8-3 only possessed higher content of TGA (154.93 ± 7.75) in its flesh portion rendering it unfit for human consumption. Practical Application: This paper was based on the research conducted on toxic compounds present in all possible potato cultivars in Pakistan. Actually, we quantify the toxic compounds (glycoalkaloids) of potato cultivars through HPLC and their dietary assessment. This paper revealed safety assessment and their application in food industries especially potato processing. 相似文献
7.
8.
Goto T Horita M Nagai H Nagatomo A Nishida N Matsuura Y Nagaoka S 《Molecular nutrition & food research》2012,56(3):435-445
Scope Recent studies have reported that tiliroside, a glycosidic flavonoid, possesses anti‐diabetic activities. In the present study, we investigated the effects of tiliroside on carbohydrate digestion and absorption in the gastrointestinal tract. Methods and results This study showed that tiliroside inhibits pancreatic α‐amylase (IC50 = 0.28 mM) in vitro. Tiliroside was found as a noncompetitive inhibitor of α‐amylase with Ki values of 84.2 μM. In male ICR mice, the increase in postprandial plasma glucose levels was significantly suppressed in the tiliroside‐administered group. Tiliroside treatment also suppressed hyperinsulinemia after starch administration. Tiliroside administration inhibited the increase of plasma glucose levels in an oral glucose tolerance test, but not in an intraperitoneal glucose tolerance test. In human intestinal Caco‐2 cells, the addition of tiliroside caused a significant dose‐dependent inhibition of glucose uptake. The inhibitory effects of both sodium‐dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) inhibitors (phlorizin and phloretin, respectively) on glucose uptake were significantly inhibited in the presence of tiliroside, suggesting that tiliroside inhibited glucose uptake mediated by both SGLT1 and GLUT2. Conclusion These findings indicate that the anti‐diabetic effects of tiliroside are at least partially mediated through inhibitory effects on carbohydrate digestion and glucose uptake in the gastrointestinal tract. 相似文献
9.
Glycogen in Saccharomyces cerevisiae is present in two pools, one soluble and intracellular, the other present in the cell wall and rendered water-insoluble owing to its covalent linkage to cell wall beta-glucan. The insoluble glycogen fraction was solubilized using beta-1,3-glucanase. The alpha beta-glucan complex obtained showed intense red staining with iodine and was isolated from free beta-glucans by affinity chromatography using concanavalin A sepharose 4B. Further use of molecular sieving has confirmed that glycogen is linked to beta-glucan as the non-retained fraction on Biogel P2 split into two peaks on treatment with amyloglucosidase. Partial acid hydrolysis and subsequent paper chromatography of the alpha beta-glucan complex isolated revealed the presence of gentiobiose and other higher oligosaccharides, indicating that glycogen is linked to beta-1,3-glucan through a beta-1,6 branch. The insoluble glycogen can be extracted in a soluble form by acetic acid treatment and is known as acid-soluble glycogen. The presence of glycogen in the cell wall is confirmed by controlled enzymatic release of alpha beta-glucan complex using lyticase from Arthobacter luteus without disruption of the plasma membrane, as can be visualized using electron microscopy. 相似文献
10.
S. Poelmans K. De Wasch H. Noppe N. Van Hoof S. Van Cruchten B. Le Bizec Y. Deceuninck S. Sterk H. J. Van Rossum M. K. Hoffman H. F. De Brabander 《Food Additives & Contaminants》2005,22(9):808-815
Following findings of 17β-19-nortestosterone (150-200 µg kg-1) in pigs of unspecified gender imported into the European Union, a study to determine steroid and hormone levels in swine from six age/gender categories (uncastrated 'old' boars, cryptorchids, one intersex, barrows, gilts and sows) was initiated. Indeed, for some hormones there has been a discussion about their being endo- or exogenous. Tissue and urine samples from swine from each of the six categories were obtained in Belgium, France, the Netherlands and the USA. Samples were analysed in three laboratories. Quantitation was obtained for norandrostenedione, 19-nortestosterone and boldenone. The results give a well-documented overview of the status of the presence of these hormones in swine. The data illustrate that uncastrated 'old' boars produce the highest percentage of 'positive' matrices, followed by the cryptorchids. Concentrations in the matrices of the barrows and the gilts are lower. Also, sow matrices contain low amounts of nor-steroids. Furthermore, urine samples from an intersex pig contains a higher concentration of nortestosterone than sows and can therefore be suspected for illegal use of these hormones. Veterinarians taking samples in pig farms for the analysis of hormones need to be aware of the presence and concentrations of these substances in the different categories. 相似文献
11.
The gene putatively encoding alpha-aminoadipate reductase (AAR) was isolated successfully by degenerate PCR and chromosome walking, based on cassette PCR methods, from the dimorphous yeast Saccharomycopsis fibuligera PD70 and was named SfLYS2. Sequence analysis revealed that it contained a putative open reading frame (ORF) of 4161 bp and encoded a polypeptide of 1386 amino acids. The deduced translation product shared an identity of 53% and 51% to the Lys2p homologues of Candida albicans and Saccharomyces cerevisiae, respectively. An atypical TATA box and a GCN4-box element were found in the 5'-upstream region. Genomic Southern hybridization suggested the presence of a single locus of SfLYS2 in the S. fibuligera genome. Expression of the ORF of SfLYS2 in a lys2(-) strain of S. cerevisiae could functionally complement the lysine mutant of the S. cerevisiae strain. S. fibuligera could use lysine as the sole nitrogen source but its growth was inhibited on the alpha-aminoadipate (AA) medium. Approximately 90% of the mutants of S. cerevisiae resistant to AA are lysine auxotrophs; in contrast all the mutants of S. fibuligera resistant to AA recovered in this work were not lysine auxotrophs. 相似文献
12.
Eksteen JM Steyn AJ van Rensburg P Cordero Otero RR Pretorius IS 《Yeast (Chichester, England)》2003,20(1):69-78
Lipomyces kononenkoae secretes a battery of highly effective amylases (i.e. alpha-amylase, glucoamylase, isoamylase and cyclomaltodextrin glucanotransferase activities) and is therefore considered as one of the most efficient raw starch-degrading yeasts known. Previously, we have cloned and characterized genomic and cDNA copies of the LKA1 alpha-amylase gene from L. kononenkoae IGC4052B (CBS5608T) and expressed them in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Here we report on the cloning and characterization of the genomic and cDNA copies of a second alpha-amylase gene (LKA2) from the same strain of L. kononenkoae. LKA2 was cloned initially as a 1663 bp cDNA harbouring an open reading frame (ORF) of 1496 nucleotides. Sequence analysis of LKA2 revealed that this ORF encodes a protein (Lka2p) of 499 amino acids, with a predicted molecular weight of 55,307 Da. The LKA2-encoded alpha-amylase showed significant homology to several bacterial cyclomaltodextrin glucanotransferases and also to the alpha-amylases of Aspergillus nidulans, Debaryomyces occidentalis, Saccharomycopsis fibuligera and Sz. pombe. When LKA2 was expressed under the control of the phosphoglycerate kinase gene promoter (PGK1(p)) in S. cerevisiae, it was found that the genomic copy contained a 55 bp intron that impaired the production of biologically active Lka2p in the heterologous host. In contrast to the genomic copy, the expression of the cDNA construct of PGK1p-LKA2 in S. cerevisiae resulted in the production of biologically active alpha-amylase. The LKA2-encoded alpha-amylase produced by S. cerevisiae exhibited a high specificity towards substrates containing alpha-1,4 glucosidic linkages. The optimum pH of Lka2p was found to be 3.5 and the optimum temperature was 60 degrees C. Besides LKA1, LKA2 is only the second L. kononenkoae gene ever cloned and expressed in S. cerevisiae. The cloning, characterization and co-expression of these two genes encoding these highly efficient alpha-amylases form an important part of an extensive research programme aimed at the development of amylolytic strains of S. cerevisiae for the efficient bioconversion of starch into commercially important commodities. 相似文献
13.
14.
GABA is a bioactive constituent of fruits, vegetables, cereals and is believed to play a role in defense against stress in plants. In animals, it acts as an inhibitory neurotransmitter in brain while also expressed in non-neuronal cells. Studies have implicated the regulator of fight or flight stress responses, β-AR signaling cascade, as mediators of cancer growth and progression in in vitro and in vivo models of pancreatic malignancies. Pancreatic cancer is the fourth leading cause of cancer mortality in western countries. This malignancy is generally unresponsive to conventional radio- and chemotherapy, resulting in mortality rate near 100% within 6 months of diagnosis. We review a series of experiments from our laboratory and those of others examining the contribution of this signaling network to pancreatic and other human malignancies. Stimulation of the β-adrenergic receptor by lifestyle and environmental factors, as well as a pre-existing risk of neoplasm, activates downstream effector molecules that lead to pro-oncogenic signaling and thereby aid cancer growth. GABAergic signaling mediated by the serpentine receptor GABA(B) acts as an antagonist to β-adrenergic cascade by intercepting adenylyl cyclase. These evidences enhance the pharmacological value of human diets rich in GABA for use as an adjuvant to standard therapies. 相似文献
15.
Fks1p and Fks2p are related proteins thought to be catalytic subunits of the beta-1,3-glucan synthase. Analysis of fks1 delta mutants showed a partial K1 killer toxin-resistant phenotype and a 30% reduction in alkali-soluble beta-1,3-glucan that was accompanied by a modest reduction in beta-1,6-glucan. The gas1 delta mutant lacking a 1,3-beta-glucanosyltransferase displayed a similar reduction in alkali-soluble beta-1,3-glucan but did not share the beta-1,6-glucan defect, indicating that beta-1,6-glucan reduction is not a general phenotype among beta-1,3-glucan biosynthetic mutants. Overexpression of FKS2 suppressed the killer toxin phenotype of fks1 delta mutants, implicating Fks2p in the biosynthesis of the residual beta-1,6-glucan present in fks1 delta cells. In addition, eight out of 12 fks1ts fks2 delta mutants had altered beta-glucan levels at the permissive temperature: the partial killer resistant FKS1F1258Y N1520D allele was severely affected in both polymers and displayed a 55% reduction in beta-1,6-glucan, while the in vitro hyperactive allele FKS1T605I M761T increased both beta-glucan levels. These beta-1,6-glucan phenotypes may be due to altered availability of, and structural changes in, the beta-1,3-glucan polymer, which might serve as a beta-1,6-glucan acceptor at the cell surface. Alternatively, Fks1p and Fks2p could actively participate in the biosynthesis of both polymers as beta-glucan transporters. We analysed Fks1p and Fks2p in beta-1,6-glucan deficient mutants and found that they were mislocalized and that the mutants had reduced in vitro glucan synthase activity, possibly contributing to the observed beta-1,6-glucan defects. 相似文献
16.
Saima Rafiq Nabila Gulzar Nuzhat Huma Imtiaz Hussain Mian Shamas Murtaza 《International Journal of Dairy Technology》2020,73(1):255-260
The present study was planned to evaluate anti‐proliferative activity of water‐soluble peptides (WSPs) extracts of Cheddar cheeses made with buffalo and cow milk using a colon adenocarcinoma cell line. Cheese extracts were prepared at different stages of ripening up to six months. Anti‐proliferative activity of extracts was evaluated through cell viability assay, cell cycle arrest and apoptosis induction using colon cancer (HCT‐116) cell line. A dose‐dependent increase in activity was observed till five months of ripening. Cells population was relatively higher at G0/G1 phase of cell cycle. Moreover, apoptosis induction was also observed in a dose‐dependent manner. 相似文献
17.
Alessandrini L Romani S Rocculi P Sjöholm I Dalla Rosa M 《Journal of the science of food and agriculture》2011,91(12):2140-2145
BACKGROUND: The aim of this work was to study the influence of steam cooking on pectin methylesterase (PME) and endogenous α‐ and β‐amylase activities in different tissues (cortex and pith) of raw and heat‐treated potatoes cv. Agria. Three different cooking temperatures were chosen (55, 70 and 85 °C). For each cooking trial, time–temperature profiles were recorded and the degree of cooking was expressed in terms of cooking factor. RESULTS: Steam cooking contributed to significantly activate PME at 55 °C and to reduce its activity at the final processing temperature (85 °C), with the highest amount in the cortex (0.3745 ± 0.0007 µmol galacturonic acid (GA) g?1 fresh weight (FW) min?1) compared with the pith (0.2617 ± 0.0012 µmol GA g?1 FW min?1). The presence of heat‐labile and heat‐stable isoforms of PME in the considered potato tissues was also assumed. Heat treatment by steam resulted in a significant decrease in endogenous α‐ and β‐amylase activities in both tissues compared with the raw potato, though without complete deactivation. Starch‐degrading enzymes were also found to be differently distributed in the raw tuber. CONCLUSION: Steam cooking affected in different ways the assessed residual enzymatic activity in the considered tissues of potatoes cv. Agria. Further research is needed to confirm the results obtained. Copyright © 2011 Society of Chemical Industry 相似文献
18.
This study examines the influence of interfacial composition on the freeze–thaw stability of oil-in-water emulsions. Three 5% w/w oil-in-water emulsions (5 mM phosphate buffer, pH 6.0) were prepared using the layer-by-layer electrostatic deposition method that had different interfacial compositions: (i) primary emulsion (β-Lg); secondary emulsion (β-Lg–ι-carrageenan); (iii) tertiary emulsion (β-Lg–ι-carrageenan–gelatin). The primary, secondary and tertiary emulsions were subjected to from one to three freeze–thaw cycles (−20 °C for 22 h, +40 °C for 2 h) in the absence or presence of sucrose (10% w/w), and then their stability was assessed by ζ-potential, particle size, microstructure and creaming stability measurements. In the absence of sucrose, the primary and secondary emulsions were highly unstable to droplet aggregation and creaming after three freeze–thaw cycles, whereas the tertiary emulsion was stable, which was attributed to the relatively thick biopolymer layer surrounding the oil droplets. In the presence of 10% w/w sucrose, all of the emulsions were much more stable, which can be attributed to the ability of sucrose to increase the amount of non-frozen aqueous phase in the emulsions. The interfacial engineering technology used in the study could therefore lead to the creation of food emulsions with improved stability to freezing and thawing. 相似文献
19.
J.G. Manjaya K.N. Suseelan T. Gopalakrishna S.E. Pawar V.A. Bapat 《Food chemistry》2007,100(4):1324-1327
Soybean variety VLSoy-2 was irradiated with 250 Gy gamma rays to induce variability. A large number of mutants affecting morphological characters were identified and characterized. True breeding mutants obtained were used for studying the variation in seed storage proteins. The mutants M-231, M-17 and M-291 lacked the A3 subunit of glycinin (11S) protein. Among the three, two mutants M-231 and M-17 were also characterized by the lack of and ′-subunits of β-conglycinin (7S). In addition, the mutant M-291 also showed low levels of trypsin inhibitor activity (TIA) and low levels of and ′-subunits of 7S protein. 相似文献
20.
The KlLYS2 gene, encoding the alpha-aminoadipate reductase of Kluyveromyces lactis, was isolated by complementation of a lysA1 mutant. The deduced amino acid sequence shared an identity of 73% with the LYS2 product of Saccharomyces cerevisiae. Despite the high sequence homology of the alpha-aminoadipate reductase genes, the two yeast species differently responded to the presence of alpha-aminoadipate in the medium. Wild-type S. cerevisiae is known to be sensitive to alpha-aminoadipate, but becomes resistant when mutated to lys2. In contrast, K. lactis strains were found to be naturally resistant to alpha-aminoadipate. Therefore, the positive selection procedure for the isolation of lys2 mutants on alpha-aminoadipate, as practised in S. cerevisiae, cannot be applied to K. lactis. A possible reason of this difference may be that the catalytic rate of the alpha-aminoadipate reductase differs in the two yeasts. The EMBL/Genbank Accession No. for the KlLYS2 gene is AJ504405. 相似文献