首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter). Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP) can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis.  相似文献   

2.

Background  

The contribution of air particles in human cardio-respiratory diseases has been enlightened by several epidemiological studies. However the respective involvement of coarse, fine and ultrafine particles in health effects is still unclear. The aim of the present study is to determine which size fraction from a chemically characterized background aerosol has the most important short term biological effect and to decipher the determinants of such a behaviour.  相似文献   

3.

Background  

Exposure to air pollution particles has been acknowledged to be associated with excess generation of oxidative damage to DNA in experimental model systems and humans. The use of standard reference material (SRM), such as SRM1650 and SRM2975, is advantageous because experiments can be reproduced independently, but exposure to such samples may not mimic the effects observed after exposure to authentic air pollution particles. This study was designed to compare the DNA oxidizing effects of authentic street particles with SRM1650 and SRM2975. The authentic street particles were collected at a traffic intensive road in Copenhagen, Denmark.  相似文献   

4.

Background  

Particulate air pollution is associated with increased risk of cardiovascular events although the involved mechanisms are poorly understood. The objective of the present study was to investigate the effects of controlled exposure to ambient air fine and ultrafine particles on microvascular function and biomarkers related to inflammation, haemostasis and lipid and protein oxidation.  相似文献   

5.

Background  

Epidemiological studies on health effects of air pollution have consistently shown adverse cardiovascular effects. Toxicological studies have provided evidence for thrombogenic effects of particles.  相似文献   

6.

Background  

An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to investigate the size and chemical composition of fine concentrated ambient particles (CAPs) in the size range 0.2–2.6 μm produced by a Versatile Aerosol Concentration Enrichment System (VACES) contained within the Mobile Ambient Particle Concentrator Exposure Laboratory (MAPCEL). The data were collected during a study of human exposure to CAPs, in Edinburgh (UK), in February-March 2004. The air flow prior to, and post, concentration in the VACES was sampled in turn into the ATOFMS, which provides simultaneous size and positive and negative mass spectral data on individual fine particles.  相似文献   

7.

Background  

Viral infections and exposure to oxidant air pollutants are two of the most important inducers of asthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial cells in vitro and in mice in vivo. Therefore, we examined whether in the setting of allergic asthma, exposure to oxidant air pollutants enhances the susceptibility to respiratory virus infections, which in turn leads to increased virus-induced exacerbation of asthma. Ovalbumin-sensitized (OVA) male C57BL/6 mice were instilled with diesel exhaust particles (DEP) or saline and 24 hours later infected with influenza A/PR/8. Animals were sacrificed 24 hours post-infection and analyzed for markers of lung injury, allergic inflammation, and pro-inflammatory cytokine production.  相似文献   

8.

Background  

The induction of cytokines by airway cells in vitro has been widely used to assess the effects of ambient and occupational particles. This study measured cytotoxicity and the release of the proinflammatory cytokines IL-6 and IL-8 by human bronchial epithelial cells treated with manufactured nano- and micron-sized particles of Al2O3, CeO2, Fe2O3, NiO, SiO2, and TiO2, with soil-derived particles from fugitive dust sources, and with the positive controls LPS, TNF-α, and VOSO4.  相似文献   

9.

Abstract  

VOHPO4·0.5H2O synthesized via the alcohol reduction of VOPO4·2H2O was mechanochemical treated for 30 min in three different media, i.e. cyclohexane, ethanol and air. XRD results revealed that their structure became less crystalline compared to the unmilled material. SEM showed that the particles for the milled materials become smaller and unique features were observed in the different type of media used. The reactivity of the oxygen species linked to V5+ and V4+ were also affected by the milling process. The selectivity to maleic anhydride from n-butane oxidation were observed to increase in line with the increase in the oxygen species associated with V5+ and the presence of isolated V5+ phase. A correlation was observed between the crystallite size of the pyrophosphate phase at (020) plane with the maleic anhydride selectivity.  相似文献   

10.

Background  

Translocation of nanoparticles (NP) from the pulmonary airways into other pulmonary compartments or the systemic circulation is controversially discussed in the literature. In a previous study it was shown that titanium dioxide (TiO2) NP were "distributed in four lung compartments (air-filled spaces, epithelium/endothelium, connective tissue, capillary lumen) in correlation with compartment size". It was concluded that particles can move freely between these tissue compartments. To analyze whether the distribution of TiO2 NP in the lungs is really random or shows a preferential targeting we applied a newly developed method for comparing NP distributions.  相似文献   

11.

Background  

Translocation of ultrafine particles (UFP) into the blood that returns from the lungs to the heart has been forwarded as a mechanism for particle-induced cardiovascular effects. The objective of this study was to evaluate the role of the endothelial barrier in the translocation of inhaled UFP from the lung into circulation.  相似文献   

12.

Background

Air pollution, mainly from combustion, is one of the leading global health risk factors. A susceptible group is the more than 200 million people worldwide suffering from chronic obstructive pulmonary disease (COPD). There are few data on lung deposition of airborne particles in patients with COPD and none for combustion particles.

Objectives

To determine respiratory tract deposition of diesel combustion particles in patients with COPD during spontaneous breathing.

Methods

Ten COPD patients and seven healthy subjects inhaled diesel exhaust particles generated during idling and transient driving in an exposure chamber. The respiratory tract deposition of the particles was measured in the size range 10?C500?nm during spontaneous breathing.

Results

The deposited dose rate increased with increasing severity of the disease. However, the deposition probability of the ultrafine combustion particles (< 100?nm) was decreased in COPD patients. The deposition probability was associated with both breathing parameters and lung function, but could be predicted only based on lung function.

Conclusions

The higher deposited dose rate of inhaled air pollution particles in COPD patients may be one of the factors contributing to their increased vulnerability. The strong correlations between lung function and particle deposition, especially in the size range of 20?C30?nm, suggest that altered particle deposition could be used as an indicator respiratory disease.  相似文献   

13.

Background  

Human β-defensin (hBD)-2, antimicrobial peptide primarily induced in epithelial cells, is a key factor in the innate immune response of the respiratory tract. Several studies showed increased defensin levels in both inflammatory lung diseases, such as cystic fibrosis, diffuse panbronchiolitis, idiopathic pulmonary fibrosis and acute respiratory distress syndrome, and infectious diseases. Recently, epidemiologic studies have demonstrated acute and serious adverse effects of particulate air pollution on respiratory health, especially in people with pre-existing inflammatory lung disease. To elucidate the effect of diesel exhaust particles (DEP) on pulmonary innate immune response, we investigated the hBD-2 and interleukin-8 (IL-8) expression to DEP exposure in interleukin-1 beta (IL-1β)-stimulated A549 cells.  相似文献   

14.

Background

Growing evidence indicates that ambient air pollution is associated with exacerbation of chronic diseases like chronic pulmonary disease. A prospective panel study was conducted to investigate short-term changes of blood markers of inflammation and coagulation in response to daily changes in air pollution in Erfurt, Germany. 12 clinical visits were scheduled and blood parameters were measured in 38 male patients with chronic pulmonary disease during winter 2001/2002. Additive mixed models with random patient intercept were applied, adjusting for trend, weekday, and meteorological parameters. Hourly data on ultrafine particles (UFP, 0.01-0.1 μm), accumulation mode particles (ACP, 0.1-1.0 μm), PM10 (particulate matter <10 μm in diameter), elemental (EC) and organic carbon (OC), gaseous pollutants (nitrogen monoxide [NO], nitrogen dioxide [NO2], carbon monoxide [CO], and sulphur dioxide [SO2]) were collected at a central monitoring site and meteorological data were received from an official network. For each person and visit the individual 24-hour average of pollutants immediately preceding the blood withdrawal (lag 0) up to day 5 (lag1-4) and 5-day running means were calculated.

Results

Increased levels of fibrinogen were observed for an increase in one interquartile range of UFP, PM10, EC, OC, CO, and NO revealing the strongest effect for lag 3. E-selectin increased in association with ACP and PM10 with a delay of one day. The ACP effect was also seen with the 5-day-mean. The pattern found for D-dimer was inconsistent. Prothrombin fragment 1+2 decreased with lag 4 consistently for all particulate pollutants. Von Willebrand factor antigen (vWF) showed a consistent decrease in association with almost all air pollutants with all lags except for lag 0. No associations were found for C-reactive protein, soluble intercellular adhesion molecule 1, serum amyloid A and factor VII.

Conclusion

These results suggest that elevated concentrations of air pollution are associated with changes in some blood markers of inflammation and coagulation in patients with chronic pulmonary disease. The clinical implications of these findings need further investigation.  相似文献   

15.

Background  

The burning of biomass in the developing world for heating and cooking results in high indoor particle concentrations. Long-term exposure to airborne particulate matter (PM) has been associated with increased rates of acute respiratory infections, chronic obstructive lung disease and cancer. In this study we determined the oxidative activity of combustion particles derived from the biomass fuel dung cake by examining their capacity to deplete antioxidants from a model human respiratory tract lining fluid (RTLF). For comparison, the observed oxidative activity was compared with that of particles derived from industrial and vehicular sources.  相似文献   

16.

Background  

Exposure to ambient particulate matter has been associated with a number of adverse health effects. Particle characteristics such as size, surface area and chemistry seem to influence the negative effects of particles. In this study, combustion particles from vehicle exhaust and wood smoke, currently used in biological experiments, were analysed with respect to microstructure and chemistry.  相似文献   

17.

Background  

Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles.  相似文献   

18.

Background  

Particulate air pollution has been associated with lung and cardiovascular disease, for which lung inflammation may be a driving mechanism. The pro-inflammatory cytokine, tumor necrosis factor (TNF) has been suggested to have a key-role in particle-induced inflammation.  相似文献   

19.

Background

Results from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m3 DEP (~1·106 particles/cm3; mass median diameter ? 240 nm) on gestational days 9–19, for 1 h/day.

Results

Gestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed significantly less than the control progeny. Only slight effects of exposure were observed on cognitive function in female DEP offspring and on biomarkers of exposure to particles or genotoxic substances.

Conclusion

In utero exposure to DEP decreased weight gain during lactation. Cognitive function and levels of biomarkers of exposure to particles or to genotoxic substances were generally similar in exposed and control offspring. The particle size and chemical composition of the DEP and differences in exposure methods (fresh, whole exhaust versus aged, resuspended DEP) may play a significant role on the biological effects observed in this compared to other studies.  相似文献   

20.

Background  

The exposure to pollutants such as diesel exhaust particles (DEP) is associated with an increased incidence of respiratory diseases. However, the mechanisms by which DEP have an effect on human health are not completely understood. In addition to their action on macrophages and airway epithelial cells, DEP also modulate the functions of dendritic cells (DC). These professional antigen-presenting cells are able to discriminate unmodified self from non-self thanks to pattern recognition receptors such as the Toll like Receptors (TLR) and Scavenger Receptors (SR). SR were originally identified by their ability to bind and internalize modified lipoproteins and microorganisms but also particles and TLR agonists. In this study, we assessed the implication of SR in the effects of DEP associated or not with TLR agonists on monocyte-derived DC (MDDC). For this, we studied the regulation of CD36, CXCL16, LOX-1, SR-A1 and SR-B1 expression on MDDC treated with DEP associated or not with TLR2, 3 and 4 ligands. Then, the capacity of SR ligands (dextran sulfate and maleylated-ovalbumin) to block the effects of DEP on the function of lipopolysaccharide (LPS)-activated DC has been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号