首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
基于标签的推荐算法中存在两个主要缺陷,缺乏用户对于标签偏好值的量化,以及不同标签在用户使用中所占权重.为此提出一种从标签角度出发的个性化推荐算法.分析用户历史行为中使用过的标签,根据用户历史行为建立用户的标签兴趣模型,利用标签兴趣模型计算用户对不同标签的偏好值;统计用户的历史评分记录,计算不同标签所占权重;将两者进行线性组合,得出用户对标签的兴趣度.利用余弦相似度,计算用户偏好相似度,将用户偏好相似度引入到矩阵分解模型中,进行项目评分预测和推荐.实验结果表明,在MovieLens数据集上,该算法相比于传统算法LFM和SVD++在RMSE上分别降低了 5.00%和1.41%,在MAE上分别降低了 5.07%和1.00%.  相似文献   

2.
为了全面分析用户兴趣数据,提升用户对推荐结果的满意度,提出一种基于协同过滤的学习资源推荐算法。分别将课程偏好、知识范围度以及教师偏好作为特征参数,结合用户的历史行为数据,对其进行全面提取。根据提取结果,以特征参数为基础,为学习资源构建属性标签,通过计算标签与用户兴趣特征的相似度,确定最终的推荐结果。测试结果表明,用户对设计算法推荐的图书资源、视频资源以及线上课程资源学习程度均高于对照组,也对资源推荐结果表现了较高的满意度。  相似文献   

3.
协同过滤推荐算法是个性化推荐系统中最常用的方法之一,其中相似度计算直接影响基于内存的协同过滤推荐算法的推荐质量.针对协同过滤推荐算法中传统的用户间相似度计算方法仅考虑共同评分项评分数值上的差异导致难以准确衡量非偏好评分场景中用户间相似度的问题,本文提出一种基于余弦相似度并融合评分相对差异的用户间相似度计算方法.该方法考虑评分规模上的差异,计算评分相对相似度并且引入放大系数,在非偏好评分的场景下可以更加准确地区分用户间差异.在真实的数据集上完成对比实验分析,结果表明在非偏好评分场景下,所提方法相较于对比方法能降低预测误差,提高推荐质量.  相似文献   

4.
提出了一种基于用户偏好的协同过滤推荐算法.首先根据不同用户兴趣序列的最长公共子序列的长度和公共子序列的个数计算用户相似度,然后将该相似度和传统协同过滤推荐算法得到的相似度进行加权混合计算,基于混合相似度进行项目推荐和预测目标用户对项目的可能评分.最后,通过比较三种推荐算法在三个数据集Ciao、Flixster和Movi...  相似文献   

5.
杨佳  孙明丽 《信息与电脑》2023,(10):244-246
传统方法在高校思政课程资源个性化效果不佳,无法满足用户精度与速度需求。因此,提出基于二元组构建思政课程资源网络,更新学习兴趣节点关键词权重,挖掘兴趣特征,用协同过滤技术分析思政课程资源学习兴趣与课程资源相似度,生成个性化推荐思政课程资源,完成基于协同过滤的高校思政课程资源个性化推荐。实验证明,设计方法 F1值在0.9以上,推荐时间在1 s以内,具有较好的性能。  相似文献   

6.
何明  要凯升  杨芃  张久伶 《计算机科学》2018,45(Z6):415-422
标签推荐系统旨在利用标签数据为用户提供个性化推荐。已有的基于标签的推荐方法往往忽视了用户和资源本身的特征,而且在相似性度量时仅针对项目相似性或用户相似性进行计算,并未充分考虑二者之间的有效融合,推荐结果的准确性较低。为了解决上述问题,将标签信息融入到结合用户相似性和项目相似性的协同过滤中,提出融合标签特征与相似性的协同过滤个性化推荐方法。该方法在充分考虑用户、项目以及标签信息的基础上,利用二维矩阵来定义用户-标签以及标签-项目之间的行为。构建用户和项目的标签特征表示,通过基于标签特征的相似性度量方法计算用户相似性和项目相似性。基于用户标签行为和用户与项目的相似性线性组合来预测用户对项目的偏好值,并根据预测偏好值排序,生成最终的推荐列表。在Last.fm数据集上的实验结果表明,该方法能够提高推荐的准确度,满足用户的个性化需求。  相似文献   

7.
传统基于标签的推荐算法仅考虑用户的评分信息,导致推荐准确度不高。为解决该问题,提出一种改进的协同过滤推荐算法。对用户-标签矩阵、资源-标签矩阵进行潜在Dirichlet分布建模,发掘推荐系统中的潜在语义主题,从语义层面计算用户对各资源的偏好概率,将计算出的偏好概率与协同过滤算法计算出的资源相似度相结合,预测用户偏好值,实现个性化推荐。在Movielens数据集上的实验结果表明,与传统基于标签的推荐算法相比,该算法能消除标签中存在的同义词、多义词等语义模糊问题,同时提高推荐准确度。  相似文献   

8.
基于协同过滤的网络论坛个性化推荐算法   总被引:1,自引:0,他引:1  
提出一种基于协同过滤的网络论坛个性化推荐算法,根据用户的发帖、回帖、阅读等记录,采用加权方法计算用户帖子的评分矩阵,获取邻近用户集合,通过邻居用户的帖子评分,计算目标用户的帖子预测评分,推荐预测评分最高的帖子。实验结果表明,该算法的推荐质量较高。  相似文献   

9.
基于景点标签的协同过滤推荐   总被引:1,自引:0,他引:1  
针对基于用户社会关系的协同过滤推荐算法有时无法给出目标用户对目标物品的评分的情况,以及基于物品的协同过滤推荐算法中存在的用户对不同类型物品的评分可能不具有可比性的问题,提出了两个基于物品标签的协同过滤推荐算法。这两个算法在计算物品相似度时引入了物品的类型标签信息。在景点评分数据上的实验结果表明:相比基于用户社会关系的协同过滤推荐算法,基于用户社会关系和物品标签的协同过滤推荐算法的准确率和覆盖率提升最高达10%和4%;相比基于物品的协同过滤推荐算法,基于物品和物品标签的协同过滤推荐算法的准确率提升达15%。这说明景点类型标签信息的引入能使得景点的相似度计算更准确。  相似文献   

10.
推荐系统是针对如今信息过载现象的一种极为有效的方法,而协同过滤算法自提出以来就在推荐系统中得到了广泛的应用,但是这种方法也存在着推荐精度不高、难以处理稀疏数据等缺点。对此提出一种结合类别偏好的协同过滤推荐算法。在原算法计算用户相似度的基础上,结合用户类别偏好的相似度来计算近邻,从而得到推荐结果。实验结果表明,该方法能较为有效地结合用户的类别偏好,与传统的协同过滤算法相比,有更好的推荐效果。  相似文献   

11.
何明  杨芃  要凯升  张久伶 《计算机科学》2018,45(Z6):465-470, 486
标签作为Web 2.0时代信息分类和检索的有效方式,已经成为近年的热点研究对象。标签推荐系统旨在利用标签数据为用户提供个性化推荐。现有的基于标签的推荐方法在预测用户对物品的兴趣度时往往倾向于赋予热门标签及其对应的热门物品较大的权重,导致权重偏差,降低了推荐结果的新颖性,未能充分反映用户个性化的兴趣。针对上述问题,定义了标签熵的概念来度量标签的不确定性,提出了标签熵特征表示的协同过滤个性化推荐算法。该算法通过引入标签熵来解决权重偏差问题,利用三分图形式描述用户-标签-项目之间的关系;构建基于标签熵特征表示的用户和项目特征表示,并通过特征相似性度量方法计算项目的相似性;最后利用用户标签行为和项目的相似性线性组合预测用户对项目的偏好值,并根据预测偏好值排序生成最终的推荐列表。在Last.fm数据集上的实验结果表明,该方法能够提高推荐准确性和新颖性,满足用户的个性化需求。  相似文献   

12.
协同过滤算法是个性化推荐系统中应用最广泛的一种推荐技术。随着用户数量和项目数量的增加,数据的稀疏性成为影响推荐质量的重要因素。为此,将传统相似度指标修正余弦相似性、Pearson相似度,与结构相似度指标Jaccard系数、Salton系数、IUF系数进行组合,提出6种组合相似度。在Movie Lens上的实验表明,基于组合相似度的优化协同过滤算法在平均绝对偏差MAE、均方根误差RMSE、召回率、覆盖率和确率等性能上都有了较大提高,提高了推荐质量。  相似文献   

13.
针对传统的基于余弦相似性的协同过滤算法中推荐集选取方法进行了改进,设计了一种新的评分方式预测用户对未评价项目的评分,从而增强了推荐的合理性。实验结果表明,该算法同传统协同过滤算法相比能显著提高推荐精度。  相似文献   

14.
传统的协同过滤推荐技术没有考虑影响用户评分的用户情境信息,但最近研究发现用户个性化情境信息直接影响着用户评分,因此在传统的协同过滤技术基础上引入用户个性化情境后推荐效果有所提高。此外可以将用户个性化情境和项目类别相结合起来。先对项目进行分类,然后再确定用户在每个项目类别下的个性化情境,同一项目类别下所有项目的用户个性化情境是相同的。在为目标项目预测评分时,先确定目标项目所在的类别,进而确定计算目标项目预测评分所用到的用户个性化情境。实验结果表明,改进后的算法较Slope one有较大提高。  相似文献   

15.
王云超  刘臻 《计算机科学》2018,45(Z11):412-416
协同过滤推荐算法是目前推荐系统领域中十分常用的方法。余弦相似度和Pearson相关系数是目前协同过滤推荐算法中计算相似度的两种常用算法。为提高协同过滤推荐算法的准确性,对相似度计算问题进行了研究,针对目前常用的余弦相似度和Pearson相关系数这两种相似度计算方法的不足,通过设计和引入调节因子,分别考虑用户在评分习惯和项目选择上的差异性,以对这两种传统的相似度算法进行优化和改进。另外,考虑到用户的偏好往往与项目所具有的属性有关,设计了衡量用户对属性偏好的参数,通过加权的方式将其与改进后的相似度算法进行融合,提出了一种融合用户评分习惯、项目选择差异及属性偏好的协同过滤推荐算法。在MovieLens数据集上进行的实验表明, 相比于传统算法,提出的改进算法更为精确,平均绝对误差和均方根误差得到了明显的降低。  相似文献   

16.
随着互联网的发展,推荐系统逐步得到广泛应用,协同过滤是其中的关键技术之一,它根据相似用户的喜好产生对目标用户的推荐.随着用户和项目数量的增加,用于产生推荐的数据集将极端稀疏,协同过滤系统的性能下降.为此,提出了一种新的用户多层相似性度量,不仅降低数据稀疏性的影响,而且克服了相似不相同的问题.实验表明,该度量方式能够提高协同过滤系统的推荐质量.  相似文献   

17.
传统的协同过滤算法因为数据集稀疏性的增加而导致推荐准确性降低。针对该问题提出一种结合项目相似度的协同过滤推荐算法。首先计算项目之间的相似度,然后根据项目之间相似度,预测用户未评分项目评分估值,以减小目标用户与候选最近邻居所形成的数据集稀疏性,最后根据用户相似度获得项目推荐集。实验结果表明,该算法能提高寻找最近邻居的准确性,从而改善协同过滤的推荐质量。  相似文献   

18.
曹斌  龚佼蓉  彭宏杰  赵立为  范菁 《计算机科学》2015,42(Z11):36-41, 54
随着电子阅读在近年来的兴起,通过研究用户对电子书籍的喜好,利用协同过滤推荐算法向用户进行个性化的书籍推荐具有实际应用价值,也成为了推荐系统研究中的重要内容。但当前很多书籍推荐应用中都存在缺少用户评分数据甚至没有用户评分的情况,使得传统协同过滤推荐方法的应用受阻。为解决此问题,通过分析处理用户阅读数据的相关行为数据,将此类行为数据通过时间-频次模型建模并得到用户-书籍评分矩阵,并利用该评分进一步实现基于用户的协同过滤书籍推荐算法。实验结果表明,改进的书籍协同过滤推荐算法的时间-频次模型能够提高书籍的推荐效果具有实践研究意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号