首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高强耐蚀Ni-Co-Cr高温合金的组织稳定性   总被引:5,自引:0,他引:5  
利用SEM,TEM及X射线衍射分析技术观察了高强耐蚀Ni-Co-Cr高温合金不同温度(704,750,849℃)长期时效1000h及700℃长期时效至5008h过程中的组织演变过程。结果表明,700℃即使长期时效5008h,γ‘相粗化缓慢,而且没有发现TCP相(如σ相)的析出。当温度升高到750℃,γ‘相迅速长大。晶界上碳化物析出增多,并析出片状的η相。导致合金冲击性能下降。温度达到849℃时,析出大量的η时。甚至形成魏氏组织形貌。由此可见,该合金在700℃时具有较好的组织稳定性。  相似文献   

2.
Ni-Cr-Co基高温合金704℃和760℃时效组织稳定性   总被引:1,自引:1,他引:1  
利用热力学计算、SEM、TEM和相分析研究了一种新型Ni-Cr-Co基高温合金在704℃和760℃长期时效至2000h后的组织变化。结果表明:该合金标准热处理态和在704℃长期时效后的析出相有MC,M23C6,M6C和γ,在760℃长期时效后还析出了η相。随时效时间增加,γ( η)及碳化物MC,M23C6和M6C的含量变化很小,化学组成稳定,但γ相粗化明显。该合金在760℃时效时,η相的析出随时效时间的增加而加剧,并且呈魏氏体分布。新合金在704℃长期时效时具有良好的组织稳定性,但在760℃时效时组织稳定性较差。  相似文献   

3.
研究了700℃超超临界锅炉管用617B合金在720℃/10 000 h、800℃/2000 h和850℃/100 h时效和不同温度50 h时效过程中组织稳定性及力学性能变化。结果表明:617B合金在10 000 h长期时效末期组织稳定性较差,γ′相粗化且晶界上有有害相析出;温度对617B合金的组织稳定性影响较大,随着温度升高γ′相急剧粗化,晶内析出相发生转变;合金的硬度主要受γ′相析出规律的影响;720℃时效过程中晶内有拉链状析出相,其种类、结构有待进一步研究。  相似文献   

4.
研究了第二代单晶高温合金DD5在1 000℃和1 100℃无应力时效不同时间后的显微组织和持久性能的变化。结果表明,1 000℃时效200 h后,γ′相仍呈规则立方分布,尺寸略有增加,时效500 h后,γ′相逐渐连接形筏,1 000 h后,γ′相的筏状组织更加完善。1 100℃相比于1 000℃,γ′相长大明显,形筏程度更高。长期时效过程中均析出块状的M6C型碳化物和颗粒状的M23C6型碳化物。1 000℃时效100 h及1 100℃时效200 h后,μ相以针状和块状形态析出,1 000℃时μ相的数量随时效时间的延长显著增加,1 100℃时析出相的数量比1 000℃明显减少。1 000℃和1 100℃时随时效温度升高和时效时间的延长,合金持久性能降低。  相似文献   

5.
采用相分析、SEM、万能拉伸试验机等手段,研究了不同时效温度对0Cr15Ni70Ti3AlNb合金组织和性能的影响。结果表明:0Cr15Ni70Ti3AlNb合金在不同的时效温度下析出相有MC相、M23C6相和γ′相。MC和M23C6碳化物在650、670、690℃时的含量基本保持不变。随着时效温度的升高,γ′相的含量和尺寸不断增加。时效温度从650℃升高到720℃,γ′相质量分数由4.971%增加至10.744%,γ′相晶粒尺寸由11.0 nm增大到38.8 nm。在650℃保温14 h后,基体内部析出细小的球状γ′相,当时效温度为750℃时,合金内部出现链状的γ′相,当时效温度为810和840℃时,合金中存在方形的γ′相。随着时效温度的升高,合金室温抗拉强度和屈服强度呈现先增高后减小的趋势,当时效温度高于750℃后,室温抗拉强度和屈服强度均迅速下降,时效温度为720℃时,合金的冲击韧性值最小。  相似文献   

6.
为了研究镍含量(5、15、25和35,at%)对Co-8.8Al-9.8W基高温合金时效组织演变及γ′强化相溶解行为的影响,运用SEM、XRD等对时效处理后合金的γ′相微观组织结构演变、γ′相相转变温度和显微硬度进行了研究。结果表明,Ni含量增加,γ′相溶解温度出现不同程度的提高,γ′相的体积分数也在逐渐增加。当Co-8.8Al-9.8W合金中Ni添加量为25%时,γ′强化相的溶解温度达到了1100℃。合金固相线温度和γ′相的形貌未发生明显变化。4种不同镍含量合金经900℃/50 h热处理后,基体均为典型的γ/γ′两相组织。经900℃/100 h热处理后,γ′相的体积分数出现不同程度的降低,且γ′相发生了明显的粗化。对4种合金900℃/50 h和900℃/100 h的显微硬度测量结果表明,当Ni含量由5%增加至15%时,其显微硬度升高;当Ni含量进一步增加时,合金的显微硬度却降低。合金的时效处理时间由50 h延长至100 h时,γ′相的体积分数减少并伴随着γ′相的粗化,导致Co-8.8Al-9.8W基合金的显微硬度降低。  相似文献   

7.
以4种不同Ni含量(15%~45%,原子分数)的新型γ′相强化Co-Al-W基合金为研究对象,通过时效与高温热处理显微组织分析以及显微硬度测试,研究了Ni对相转变温度、γ/γ′两相组织演变、γ′相高温溶解行为和显微硬度的影响.结果表明:随着Ni含量的增加,γ′相溶解温度升高,固相线温度未发生明显变化.4种合金经900℃,50 h热处理后,基体均为γ/γ′两相组织;随着Ni含量的增加,γ′相形貌由立方形逐渐向近似球形转变,γ′相体积分数不断降低.经300 h长时间热处理后,合金的γ′相形貌没有明显改变,γ′相体积分数出现不同程度的降低.对900℃,300 h热处理的合金进行970~1060℃高温处理后,γ′相体积分数随着热处理温度的升高而逐渐减少,并最终全部溶解而消失;低Ni含量(15%和25%)合金和高Ni含量(35%和45%)合金的γ′相形貌分别转变为球形和立方形.900℃,50 h和300 h显微硬度测试结果表明:随着Ni含量的增加,合金的硬度降低;热处理时间的延长使合金的硬度小幅增加.  相似文献   

8.
利用扫描电镜对GH4586B合金在750℃下时效1500 h过程中的显微组织和室温拉伸断口进行观察分析。结果表明,GH4586B合金在时效过程中无有害TCP相(拓扑密堆相)析出,晶内析出尺寸差异较大的两种γ′相粒子,随着时效时间的延长,大尺寸的γ′相逐渐长大,形貌由球形逐步转变为方形,且间距也逐渐变大,这种γ′相析出的特征有利于合金强韧性的匹配;合金在室温下随着时效时间的延长,强度和塑性发生变化,时效500 h后合金具有较好的强度和塑性的匹配,这与γ′相析出的形貌、分布、数量直接相关;通过室温拉伸断口的形貌分析,合金断裂均具有塑性断裂特征。  相似文献   

9.
研究了第二代镍基单晶高温合金DD5在870~980℃时效150~2000 h后γ′相的粗化动力学。结果表明:长期时效后DD5合金γ′相的形貌和尺寸取决于时效温度和时效时间,可用形貌稳定因子来表征;在870~980℃时效温度下,枝晶中γ′析出相发生粗化,γ′析出相的平均尺寸随时效时间和温度的增加而增大;动力学计算结果表明DD5合金在长期时效后,γ′相的粗化长大受合金元素扩散的控制,γ′析出相依然保持规则立方状,具有较好的组织稳定性。  相似文献   

10.
采用喷射沉积技术制备了Al-12Zn-2.4Mg-1.1Cu合金。通过高分辨电子显微镜和硬度测试等手段,研究分析了双级时效处理对喷射沉积Al-Zn-Mg-Cu合金微观组织和力学性能的影响。结果表明:合金经120℃(14 h)时效后,硬度达到峰值,晶内主要强化相为η′亚稳相和少量的GPⅡ区,晶界析出相呈连续分布;合金经120℃(14 h)+160℃(0.5 h)、120℃(14 h)+160℃(16 h)、120℃(14 h)+160℃(24 h)双级时效后,硬度较峰时效相比,分别下降了5.92%、11.13%、15%,它们的晶内析出相依次是细小的η′相、粗大的η′相、粗大的η相,晶界析出相呈断续状分布,晶内和晶界的析出相明显长大,并且在120℃(14 h)+160℃(16 h)、120℃(14 h)+160℃(24 h)时效后,出现了晶界无沉淀析出带。通过对TEM图像的测量,可以得到η相和η′相的晶格参数分别为0.520、0.860 nm和0.490、1.402 nm;对η和η′相解卷处理,可以提高像的分辨率,然后用jems对η和η′相模拟,可以确定原子的基本位置。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号