首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of ethylene vinyl acetate copolymer (EVA) were blended with various kinds of tackifiers and the miscibility between the components was investigated. The miscibility of the blend is illustrated as a phase diagram. The EVA and modified rosin systems tended to have a phase diagram with lower critical solution temperature (LCST), whereas the EVA and petroleum resin systems tended to have that with upper critical solution temperature (UCST). The phase diagrams of EVA/tackifier resins systematically changed as VAc content in the copolymer increased, which is accounted for by the classical Flory-Huggins theory.  相似文献   

2.
Natural rubber (NR) was blended in various ratios with 12 kinds of tackifiers that were prepared from petroleum. The blends were heated to various temperatures (20–120°C) to investigate their miscibility. The blends were visually observed for transparency or opacity at each temperature and further observed under an optical microscope for any existence of phase-separated structure. Miscibility of the blends is illustrated as phase diagrams in this article. NR/aliphatic resin systems and NR/aliphatic-aromatic copolymer systems showed phase diagrams of the lower critical solution temperature type, wherein the blends turned faintly cloudy over the binodal curves. The NR/hydrogenated petroleum resin system also showed a phase diagram of the lower critical solution temperature type. The miscible range of a blend system tends to become smaller as the molecular weight of a tackifier increases. Resins prepared by polymerization of pure aromatic monomers were completely immiscible with NR. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 221–229, 1998  相似文献   

3.
Rheology and morphology of cyclic olefin copolymer (COC) / ethylene vinyl acetate copolymer (EVA) immiscible blends with droplet and co-continuous morphologies were experimentally examined and theoretically analyzed using emulsion and micromechanical models. The blends showed an asymmetric phase diagram in which the EVA-rich blends had smaller dispersed size domains as compared to the COC-rich blends. This could be explained based on the higher melt elasticity and viscosity of COC as compared to EVA determined by the rheological investigations. The rheological tools were used to investigate the miscibility of the blends. From the melt viscosity data it is found that the COC/EVA blends show a positive deviation behavior at all compositions which is a hint for strong interaction between the COC and EVA. Analysis of Cole-Cole and Han diagrams revealed that COC/EVA blends, at high EVA contents, were more compatible than COC-rich blends. For the droplet morphology, Palierne model was more successful but, by increasing the dispersed phase content some deviation was observed. In the co-continuous region, the Coran model was in good correspondence with the experimental data as compared to the Veenstra’s model. The storage and loss modulus of EVA-rich blends had a better correspondence with the Palierne model than the COC-rich blends which further confirmed the morphological findings. Interfacial tension calculated for the COC/EVA blends using the Palierne model, were about 1.2 and 15 mN/m2 for EVA-rich (10/90) and COC-rich blends (90/10), respectively. In both EVA-rich and COC-rich systems the interfacial tension increased with increasing the dispersed phase content.  相似文献   

4.
The effects of organically modified and pristine nanoclays on the kinetics of thermodynamic equilibrium state attainment for semicrystalline binary blends of polyethylene (PE)/ethylene-vinyl acetate copolymer (EVA) have been investigated. Due to the non-equilibrium compatibilization mechanism, intercalated organoclay results in a slower rate of phase miscibility change at lower annealing temperatures, thereby worsening the PE/EVA compatibility state. In contrast to poorly dispersed pristine nanoclay, the homogeneous state is obtained at higher or equal rates by adding organoclay at higher annealing temperatures because of the dominant role of nanofiller equilibrium compatibilization mechanism. Phase diagrams of these UCST blends determined by a dynamic method shifts to higher temperatures by the incorporation of nanofillers and the unexpected reduction in miscibility window area is much more noticeable for nanocomposites having highly restricted molecular movements. This can verify that dynamic methods lose their efficiency for measuring the equilibrium phase diagram of polymer blends containing nanoparticles.  相似文献   

5.
In this study, the correlations between the mechanical performance and structural properties of injected-molded polyethylene (PE)/ethylene-vinyl acetate copolymer (EVA)/nanoclay (NC) nanocomposites are investigated by revisiting the interfacial phenomena and miscibility state of the component pairs. The effects of different parameters including the injection molding temperature, mixing sequence in melt-compounding process, blend composition, and nanoclay loading are studied. A great complexity arises in the filling and cooling process of the injected-molded parts owing to the phase behavior of the polyolefin blend, crystallization, and morphological changes. The injection molding temperature positively influences the elastic modulus, tensile strength and impact strength of PE/EVA/NC systems through the improvements in the PE/EVA partial miscibility, mutual solubility, and interfacial interactions of PE/clay and PE/EVA pairs. By applying a two-step mixing process before the injection molding, more nanoclay stacks with smaller thicknesses and larger clay interlayer spacing are formed. The stronger pinning effect of nanoparticles in the second mixing sequence retards the phase separation phenomenon of PE/EVA blend during the cooling stage. As a result of improved mutual PE/EVA solubility, the elastic modulus and tensile strength decrease and the impact resistance increases in the PE-rich systems. On the other hand, an opposite trend for these properties is found for the EVA-rich systems.  相似文献   

6.
Rui Xie  Bingxin Yang  Bingzheng Jiang 《Polymer》1993,34(24):5016-5019
The excimer fluorescence of a triblock copolymer, styrene-butadiene-styrene (SBS) containing 48 wt% polystyrene was used to investigate its miscibility with poly(vinyl methyl ether) (PVME). The excimer-to-monomer emission intensity ratio IM/IE can be used as a sensitive probe to determine the miscibility level in SBS/PVME blends: IM/IE is a function of PVME concentration, and reaches a maximum when the blend contains 60% PVME. The cloud point curve determined by light scattering shows a pseudo upper critical solution temperature diagram, which can be attributed to the effect of PB segments in SBS. The thermally induced phase separation of SBS/PVME blends can be observed by measuring IM/IE, and the phase dissolution process was followed by measuring IM/IE at different times.  相似文献   

7.
The compatibilization effects of organically modified nanoclay on the miscibility window, phase separation kinetics, biphasic morphology, interfacial tension, and final properties of polyethylene/ethylene vinyl acetate copolymer blends exhibiting UCST behavior have been investigated. Regardless of blend composition, intercalated nanoclay decreases the phase transition temperatures to lower values and changes the symmetry of phase diagram. The miscibility of PE and EVA phases in the amorphous regions of nanocomposites noticeably enhances and finer biphasic morphology is obtained by the incorporation of organoclay. The pinning influence of the nanofiller on polymer chain diffusion causes much slower phase separation kinetics for the nanocomposites. Similar to conventional compatibilizers such as block copolymers, the interfacial activity of nanoclay leads to a sharp decline in the interfacial tension of PE/EVA up to 2‐orders of magnitude. Moreover, the results show that imposing restrictions on the phase separation phenomenon increases the impact strength of the virgin blend and related nanocomposite. However, this improvement has been much more noticeable in the presence of nanoparticles, which is due to the simultaneous roles of organoclay as an effective compatibilizer and reinforcement. POLYM. COMPOS., 35:2329–2342, 2014. © 2014 Society of Plastics Engineers  相似文献   

8.
Poly(ethylene oxide)/poly(ε-caprolactone) (PEO/PCL) blends can be widely used in lithium rechargeable battery area or as medical materials, while the miscibility and phase diagram of the blends are still unclear. The present work attempted to establish the blends’ phase diagram using rheometry and investigated the miscibility. The results showed that a miscibility window of upper critical solution temperature character of the blends is revealed. Meanwhile, the abnormal rheological behavior of PEO at temperatures higher than 130 °C has little influence on the phase diagram determination. Different rheological properties of PEO/PCL blends from those of PEO revealed the existence of interactions between PEO and PCL molecular chains. Whereas shear-induced mixing or shear-induced phase separation might occur in phase diagram determination of PEO/PCL blends using rheometry.  相似文献   

9.
Blends of photovoltaic-grade ethylene–vinyl acetate copolymer (EVA), defined by high VA-content and low crystallinity, and low-density ethylene–octene copolymer (EO) have been investigated with regard to their processing, thermal and mechanical properties as well as their morphology. It was found that the amount of EO in the blend has a strong influence on the shear thinning behavior, melt viscosity and therefore the required extrusion temperature and resulting ability to incorporate temperature-sensitive additives like a peroxidic crosslinking agent. A phase separated morphology was found for all blend compositions, though partial miscibility leading to co-crystallization was observed for EVA rich blends. EO rich blends show lower glass transition and higher melting point compared to neat EVA and exhibit higher elastic modulus at elevated temperatures as well as greater elongation at break during tensile testing while the light transmission is diminished. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47714.  相似文献   

10.
The existence of a miscibility window in the PVC/EVA system was investigated using a binary approach. The miscibility window was observed for 45 or 50% to 80% acetate content depending on thermodynamic parameters used. Experimental data on PVC/PVA system give no evidence for the existence of miscibility. The cloud point curves indicated a lower critical solution temperature (LCST) for the PVC/EVA system. This behavior was corroborated using equation of state analysis. Received: 6 December 1996/Revised: 29 July 1997/Accepted: 7 August 1997  相似文献   

11.
A series of ethylene vinyl acetate copolymers (EVA) were blended with some tackifier resins that were made from wood extracts, and possible relations between their miscibility and properties as hot‐melt adhesives (HMA) were investigated. From our previous report on miscibility of various EVA‐based HMAs, we chose some blends that represent some of the typical miscibility types and investigated their peel strengths. When the blends were miscible at testing temperatures, the temperature at which the maximum value of peel strength was recorded tended to move toward higher temperature as tackifier content of blends increased. This result corresponds to the storage modulus of the blends whose curves tended to move toward higher temperature as tackifier content of blends increased when blend components were miscible as well as their maximum values of tan δ, or glass transition temperatures. It was characteristic for peel strength that there existed second peaks on peel strengths curves at ~ 100°C, which adhesive tensile strengths for the blends did not have. In terms of relationship between miscibility and HMA performances, we suggest that there are several factors other than miscibility that affect absolute values of peel strength more directly than miscibility; this idea has to be investigated further in the a future study. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 726–735, 2002  相似文献   

12.
HIPS/EVA/CB体系的相容性   总被引:1,自引:0,他引:1  
研究了炭黑(CB)对高抗冲聚苯乙烯(HIPS)/乙烯-乙酸乙烯酯共聚物(EVA)共混体系相容性的影响,并预测了共混体系的相形态转变点。填充CB后,当EVA用量大于50 phr时,碳氧双键伸缩振动峰的位置由1 737.9cm~(-1)偏移到1 706.5 cm~(-1)附近,且在1 240.0 cm~(-1)附近的碳氧单键峰减弱,近乎消失。采用半经验公式对共混体系进行理论预测,HIPS/EVA/CB共混体系理论上发生相形态转变时,HIPS的临界质量分数为50%~60%,经傅里叶变换红外光谱和扫描电子显微镜照片分析,共混体系发生相形态转变时,HIPS的质量分数约为42%。  相似文献   

13.
Yonghua Yao  Chenggui Zhang 《Polymer》2010,51(14):3225-4599
The phase diagram of an isotactic polypropylene/poly(ethylene-octene) copolymer (iPP/PEOc) blend system was investigated using phase contrast optical microscopy, laser light scattering and differential scanning calorimetry (DSC). The sample goes through immiscible (opaque) region to transparent region (seemingly miscible) and back to immiscible (opaque) again as temperature increases through 300 °C region. But it turns out that this is not a real one phase region. It is caused by a temperature dependent inversion of refractive indices between the two component polymers, which can be easily misinterpreted as a miscible region between an upper critical solution temperature (UCST) state and a lower critical solution temperature (LCST) state. With a proper interpretation and analysis of this refractive index inversion, the UCST phase diagram of this iPP/PEOc blend system has been obtained.  相似文献   

14.
This study examines the phase behavior of ethylene–vinyl acetate copolymer (EVA) and poly(methyl methacrylate) (PMMA) blends during MMA polymerization. The ternary PMMA/MMA/EVA mixtures are considered to create a triangular phase diagram, which responds the phase changes during polymerization. The phase changes during MMA polymerization are also examined by optical microscope and photometer. Since the PMMA and EVA are well‐known immiscibles, the polymer solution undergoes phase separation at the initial stage of the MMA polymerization. Additionally, the phase inversion occurs as the conversion of MMA between 13.8 and 20.8%. On the other hand, the EVA‐graft‐PMMA, which can reduce the dispersed EVA particle size, is induced efficiently by taking tert‐butyl peroctoate (t‐BO) as initiator during MMA polymerization. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1001–1008, 2003  相似文献   

15.
Two types of wax were added to a ethylene vinyl acetate (EVA) copolymer/aromatic hydrocarbon resin (tackifier) blend in the molten state and the miscibility, viscoelastic and adhesion properties of ternary blends as hot-melt adhesives (HMAs) were investigated. Miscibility and viscoelastic properties were studied using differential scanning calorimetry (DSC), Brookfield viscometry and dynamic mechanical thermal analysis (DMTA), and their adhesion strength was determined in terms of single lap shear strength. DSC thermograms of both types of waxes showed their melting peaks in a similar region to that of EVA/tackfier blend. It was difficult to evaluate the miscibility of ternary blends using DSC because the melting peaks of the waxes overlapped with those of the EVA/tackifier blend, although the glass transition temperature (T g) of the ternary blend systems slightly increased with increasing wax concentration. However, their storage modulus (E′) increased slightly and loss tangent (tan δ) showed different peaks when two types of wax were added to the EVA/tackifier blend. Therefore, the miscibility of EVA/tackifier blend altered with addition of waxes. In addition, their melt viscosity decreased with increasing wax concentration. Furthermore, the adhesion strength of the ternary blends decreased with increasing wax concentration, despite the increment of storage modulus. These results suggested that the ternary blends of EVA/tackifier/wax were heterogeneous.  相似文献   

16.
Multiple melting behaviors and partial miscibility of ethylene‐vinyl acetate (EVA) copolymer/low density polyethylene (LDPE) binary blend via isothermal crystallization are investigated by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). Crystallization temperature T (°C) is designed as 30, 50, 70, 80°C with different crystallization times t (min) of 10, 30, 60, 300, 600 min. The increase of crystallization temperature and time can facilitate the growth in lateral crystal size, and also the shift of melting peak, which means the completion of defective secondary crystallization. For blends of various fractions, sequence distribution of ethylene segments results in complex multiple melting behaviors during isothermal crystallization process. Overlapping endothermic peaks and drops of equilibrium melting points of LDPE component extrapolated from Hoffman–Weeks plots clarify the existence of partial miscibility in crystalline region between EVA and LDPE. WAXD results show that variables have no perceptible influence on the predominant existence of orthorhombic crystalline phase structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Summary The phase boundaries as a function of copolymer composition have been established in one polymer/copolymer and two copolymer/copolymer blend systems involving the repeat unit methacrylonitrile. Using the critical conditions for miscibility according to the Flory-Huggins theory, and an overall blend interaction parameter (Bblend) expressed in terms of repeat unit interactions Bi-j, values of BS-MAN and BMMA-MAN have been determined. These are compared with the corresponding acrylonitrile interactions.  相似文献   

18.
We investigated the miscibility of polybutadienes with butadiene-styrene copolymers of varying styrene content. The methods of optical microscopy, differential scanning calorimetry, and small angle light scattering (SALS) were used. All polymers/copolymers used in this study have equivalent butadiene microstructures. Copolymers with high styrene levels are immiscible with polybutadiene. The tendency to miscibility increases with decreasing styrene content. An upper critical solution temperature is observed with the 23 percent styrene copolymer.  相似文献   

19.
《Polymer》1987,28(7):1177-1184
The phase behaviour for blends of various polymethacrylates with styrene-acrylonitrile (SAN) copolymers has been examined as a function of the acrylonitrile content of the copolymer. Poly(methyl methacrylate), poly(ethyl methacrylate) and poly(n-propyl methacrylate) were found to be miscible with SANs over a limited window of acrylonitrile contents while no SANs appear to be miscible with poly(isopropyl methacrylate) or poly(n-butyl methacrylate). These conclusions were reached on the basis of lower critical solution temperature (LCST) and glass transition temperature behaviour. All miscible blends exhibited phase separation on heating, LCST behaviour, at temperatures which varied greatly with copolymer composition. An optimum acrylonitrile (AN) level ranging from about 10 to 14% by weight resulted in the highest temperatures for phase separation which has important implications for selection of SANs to produce homogeneous mixtures by melt processing. The basis for miscibility in these systems is evidently repulsion between styrene and acrylonitrile units in the copolymer as explained by recent models. The excess volumes for all blends are zero within experimental accuracy which suggests that the interactions for miscibility are relatively weak even for the optimum AN level. This interaction becomes smaller the larger or more bulky is the alkyl side group of the polymethacrylate.  相似文献   

20.
The phase and crystallization behavior of the blends consisting of LLDPE (0.7 mol% hexene copolymer) and PEB (26 mol% butene copolymer) have been investigated using optical microscopy (OM), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The blends exhibited an upper critical solution temperature of 162°C. The solubility parameter analysis showed that the solubility parameter of LLDPE decreased more rapidly than that of PEB with temperature. However, due to the slow kinetics of phase separation, at lower crystallization temperatures, the crystallization and melting behavior of LLDPE mainly reflected the miscibility between LLDPE and PEB. Crystallization from the two-phase state could present two crystallization peaks. PEB didnt change the crystal cell unit and crystallinity of LLDPE, but changed its distribution of lamellar thickness or crystal perfection. The dilute effect of PEB also changed the overall nature of the nucleation and growth process of LLDPE. The equilibrium melting temperature in this blend could be obtained by the Hoffman-Weeks method, and comparing with that of the pure LLDPE, it was reduced and kept relatively constant in the bi-phase state. The phase diagram made up of the LLPS boundary, equilibrium melting temperatures and melting temperatures observed may be better to indicate the phase and crystallization behavior of LLDPE/PEB blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号