首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Loss of genetic material on chromosomes 13q and 17 has been suggested to be of importance in the initiation and progression of female breast cancer, but their involvement is less well illustrated in male breast carcinomas. The present study was designed to investigate the incidence of allelic loss and microsatellite instability for chromosomes 13q, 17p and 17q in 13 sporadic male breast carcinomas using matched normal-tumour DNA samples and seven polymorphic microsatellite markers. Genetic imbalance was found in one or more informative markers in 85% of the patients, with more frequent loss of heterozygosity and microsatellite instability at loci on chromosome 13q. Thus, a high incidence of allelic losses was observed at the retinoblastoma gene (4/6) and likewise at the D13S263 locus (7/12), which also exhibited the highest frequency of microsatellite instability. The intragenic microsatellite in intron 1 of the TP53 gene on chromosome 17p revealed loss of heterozygosity in 3 of 8 informative patients. The investigated proximal region of chromosome 13q is postulated to harbour several potential tumour suppressor genes associated with female breast cancer. The high incidence of allelic losses at the D13S263 microsatellite, located distal to both the BRCA2 and the Brush-1 loci but proximal to the retinoblastoma gene, possibly indicates the presence of an additional tumour suppressor gene which may be involved in male breast carcinomas. However, this hypothesis needs verification in an extended study of male breast carcinomas.  相似文献   

2.
The present study was undertaken to analyse the loss of heterozygosity (LOH) of the three genes, BRCA1, BRCA2 and ATM, and their correlation to clinicopathological parameters in sporadic breast cancer. We studied 59 sets of invasive ductal carcinoma, compared to matched normal control DNA. Microsatellite markers intragenic to BRCA1 (D17S1323, D17S1322, D17S855), BRCA2 (D13S1699, D13S1701, D13S1695) and ATM (D11S2179) were simultaneously used. In addition, one marker telomeric to BRCA2 (D13S1694) and four markers flanking ATM were analysed (D11S1816, D11S1819, D11S1294, D11S1818). Thirty-one per cent of the informative cases showed loss of heterozygosity for the BRCA1 gene, 22.8% for BRCA2 gene and 40% for ATM. LOH of BRCA1 correlated with high grade tumors (p=0.0005) and negative hormone receptors (p=0.01). LOH of ATM correlated with higher grade (p=0.03) and a younger age at diagnosis (p=0.03) in our set of tumors. No correlations were detected between BRCA2 LOH and any of the analysed clinicopathological parameters. However, a correlation was detected between allelic loss of the D13S1694 marker, telomeric to BRCA2, and larger tumor sizes and negative estrogen receptors, favoring the hypothesis of the presence of another putative tumor suppressor gene, telomeric to BRCA2, in the 13q12-q14 region. Only 11 tumors had LOH at more than one of the three genes, most of them (6/11) associated LOH of BRCA1 and ATM. One tumor only combined loss of the three genes BRCA1, BRCA2 and ATM.  相似文献   

3.
The high incidence of allelic imbalance on the long arm of chromosome 16 in breast cancer suggests its involvement in the development and progression of the tumor. Several loss of heterozygosity (LOH) studies have led to the assignment of commonly deleted regions on 16q where tumor suppressor genes may be located. The most recurrent LOH regions have been 16q22.1 and 16q22.4-qter. The aim of this study was to gain further insight into the occurrence of one or multiple "smallest regions of overlap" on 16q in a new series of breast carcinomas. Hence, a detailed allelic imbalance map was constructed for 46 sporadic breast carcinomas, using 11 polymorphic microsatellite markers located on chromosome 16. Allelic imbalance of one or more markers on 16q was shown by 30 of the 46 tumors (65%). Among these 30 carcinomas, LOH on the long arm of chromosome 16 was detected at all informative loci in 19 (41%); 13 of them showed allelic imbalance on the long but not on the short arm, with the occurrence of variable "breakpoints" in the pericentromeric region. The partial allelic imbalance in 11 tumors involved either the 16q22.1-qter LOH region or interstitial LOH regions. A commonly deleted region was found between D16S421 and D16S289 on 16q22.1 in 29 of the 30 tumors. The present data argue in favor of an important involvement of a tumor suppressor gene mapping to 16q22.1 in the genesis or progression of breast cancer.  相似文献   

4.
NM23 is a candidate tumor suppressor protein and has recently been identified as an NDP kinase. The expression of NM23 is inversely related to the metastatic potential of tumor cells. Two NM23 genes, NME1 and NME2, that code for the A and B chains of the kinase, respectively, have been cloned. To determine the human chromosomal location of the NME2 gene, we have analyzed DNA from rodent-human cell lines and hybrid cell lines containing portions of chromosome 17 by a combination of PCR amplification and Southern hybridization. The NME2 gene was mapped to the chromosome region 17q21-q22, the same region in which the NME1 gene has been localized. This region is linked to the early onset breast/ovarian locus (BRCA1) and allelic deletions of NME1 have been associated with metastatic potential of colorectal carcinomas.  相似文献   

5.
DPC4 and DCC, putative tumor suppressor genes implicated in the genesis of several types of human cancer, lie on the long arm of human chromosome 18. We examined 200 primary breast cancers for allelic losses on chromosome 18, using 15 microsatellite markers distributed along the long arm. Allelic loss was detected most frequently (29-30%) at loci mapped to 18q21. Deletion mapping of the 34 tumors showing partial or interstitial deletions identified a commonly deleted region within the 4-cM interval flanked by D18S474 and D18S487 at 18q21.1-q21.3. Although this interval included the DPC4 and DCC genes, we excluded DPC4 from candidacy when polymerase chain reaction-single-strand conformation polymorphism analysis of each exon failed to detect abnormalities in any of the 54 breast cancers that exhibited loss of heterozygosity involving 18q. Allelic loss on 18q was found more frequently in tumors of the solid tubular histological type (24 of 55, 44%) than in other types (24 of 113, 21%) (P = 0.0049). The results suggest that a tumor suppressor gene located within the 4-cM region at 18q21, either DCC or another gene not yet identified, may play a role in the development of some sporadic breast cancers, particularly those of the solid tubular type.  相似文献   

6.
BRCA1, a breast and ovarian cancer susceptibility locus, has been isolated and maps to 17q21. A physical map of the BRCA1 region which extended from the proximal boundary at D17S776 to the distal boundary at D17S78 was constructed and consists of 51 sequence tagged sites (STSs) from P1 and YAC ends, nine new short-tandem repeat (STR) polymorphic markers, and eight identified genes. The contig, which spans the estimated 2.3 Mb region, contains 29 P1s, 11 YACs, two BACs, and one cosmid. Based on key recombinants in two linked families, BRCA1 was further localized to a region bounded by D17S1321 on the proximal side and D17S1325 on the distal side. Within this estimated 600 kb region, the contig was composed completely of P1s and BACs ordered by STS-content mapping and confirmed by DNA restriction fragment fingerprinting.  相似文献   

7.
Karyotypic and molecular data indicate that genetic alterations of the long arm of chromosome 11 (11q) are involved in the pathogenesis of malignant melanoma as well as of other malignancies. We have shown previously, by analysis of loss of heterozygosity (LOH), that a tumor-suppressor gene playing an important role in malignant melanoma is likely to be located within a 51-cM region at 11q23. Its loss appeared to be a late event in tumor progression and an indicator of a less favorable clinical outcome. To further test this hypothesis on a larger set of tumors and to refine the region(s) of common allelic loss, we analyzed 21 polymorphic microsatellite repeats on 11q. A PCR-based assay for LOH was used to study normal and tumor tissues from 53 individuals with primary cutaneous malignant melanoma or metastatic disease. Our findings indicate that in cutaneous malignant melanoma there are at least 2 distinct regions of common allelic loss on 11q, one of them centered around marker APOC3 at 11q23.1-q23.2 delineated by markers D11S1347 and D11S4142 and spanning approximately 5 Mb and a second 3-Mb region around marker D11S925 at 11q23.3 delineated by markers D11S528 and D11S1345. Both regions have been described as deletion targets or as being included within larger allelic deletions detected in several other common tumor types. Thus, these 2 putative melanoma-suppressor loci are likely to harbor tumor-suppressor genes relevant to tumorigenesis of melanoma and a number of other common human malignancies.  相似文献   

8.
It is known that nearly 5% of gastric carcinomas arise under the age of 40. To elucidate genetic alterations in these patients, we performed studies using microsatellite assay in 27 gastric cancers under 35 years of age, composed of 5 well and 22 poorly differentiated adenocarcinomas. We detected replication errors (RERs) in 18 (67%) of 27 tumors, but no germline mutation in DNA mismatch repair genes (hMLH1 and hMSH2), except fory 3 somatic mutations in the hMLH1 gene. Loss of heterozygosity (LOH) at D17S855, located on chromosome 17q21 (BRCA1), was detected in 8 (40%) of 20 informative cases. In 12 (44%) of 27 cases, LOH on chromosome 17q12-21 including the BRCA1 was found in several neighboring markers in this region, while no mutation was found in the BRCA1 gene. Four (40%) of 10 scirrhous type gastric cancers exhibited wide allelic deletions on chromosome 17q12-21. These results overall suggest that young gastric cancer patients display highly frequent micro-satellite instability that might be due to defect of DNA repair system rather than hMLH1 and hMSH2. In addition, chromosome 17q12-21 including BRCA1 locus may contain a candidate for tumor suppressor gene, particularly in scirrhous type gastric cancers arising in young patients.  相似文献   

9.
Multiple chromosome 17 loci may be involved in ovarian carcinogenesis. Fifty-seven sporadic ovarian epithelial tumors were examined for loss of heterozygosity at 15 loci on chromosomes 17p. Eighty % (39 of 49) of informative tumors had allelic loss in 17p13.3 at D17S30, D17S28, or both loci within this region, including 3 of 7 tumors of low malignant potential and 4 of 5 nonmetastatic carcinomas. The smallest region of overlapping deletions extends from D17S28 to D17S30, a distance of 15 kb. Furthermore, several tumors have breakpoints within the region detected by the D17S30 probe. Chromosome 17p13.3 genes with potential tumor suppressor function include HIC-1, DPH2L (N. J. Phillips et al. Isolation of a human diphthamide biosynthesis gene on chromosome 17p13.3, submitted for publication)/OVCA1, PEDF, and CRK. The HIC-1 coding sequence lies i kb centromeric to the D17S28-S17S30 region of deletion (M. Makos Wales et al., Nat. Med., 1:570-577, 1995) but remains a candidate because 5'-regulatory elements may lie within the critical region. Portions of the DPH2L/OVCA1 coding sequence lie within the D17S28-D17S30 interval. Somatic cell hybrid analysis places PEDF in an interval including D17S28, D17S30, and D17S54, whereas CRK is excluded from this interval. Chromosome 17p13.3 loss precedes TP53 and BRCA1 region deletions because the latter changes are see only in high-stage carcinomas. Microsatellite instability plays only a minor role in sporadic ovarian carcinogenesis because only 1 of 57 tumors showed this finding.  相似文献   

10.
A susceptibility gene for hereditary breast-ovarian cancer, BRCA1, has been assigned by linkage analysis to chromosome 17q21. Candidate genes in this region include EDH17B2, which encodes estradiol 17 beta-hydroxysteroid dehydrogenase II (17 beta-HSD II), and RARA, the gene for retinoic acid receptor alpha. We have typed 22 breast and breast-ovarian cancer families with eight polymorphisms from the chromosome 17q12-21 region, including two in the EDH17B2 gene. Genetic recombination with the breast cancer trait excludes RARA from further consideration as a candidate gene for BRCA1. Both BRCA1 and EDH17B2 map to a 6 cM interval (between THRA1 and D17S579) and no recombination was observed between the two genes. However, direct sequencing of overlapping PCR products containing the entire EDH17B2 gene in four unrelated affected women did not uncover any sequence variation, other than previously described polymorphisms. Mutations in the EDH17B2 gene, therefore do not appear to be responsible for the hereditary breast-ovarian cancer syndrome. Single meiotic crossovers in affected women suggest that BRCA1 is flanked by the loci RARA and D17S78.  相似文献   

11.
The BRCA1 gene on human chromosome 17q21 is responsible for an autosomal dominant syndrome of inherited early onset breast/ovarian cancer. It is estimated that women harboring a germline BRCA1 mutation incur an 85% lifetime risk of breast cancer and a greatly elevated risk of ovarian cancer. The BRCA1 gene has recently been isolated and mutations have been found in the germline of affected individuals in linked families. Previous studies of loss of heterozygosity (LOH) in breast tumors have been carried out on sporadic tumors derived from individuals without known linkage to BRCA1 and on tumors from linked families. Loss of large regions of chromosome 17 has been observed, but these LOH events could not be unequivocally ascribed to BRCA1. We have studied 28 breast and 6 ovarian tumors from families with strong evidence for linkage between breast cancer and genetic markers flanking BRCA1. These tumors were examined for LOH using genetic markers flanking and within BRCA1, including THRA1, D17S856, EDH17B1, EDH17B2, and D17S183. Forty-six percent (16/34) of tumors exhibit LOH which includes BRCA1. In 8 of 16 tumors the parental origin of the deleted allele could be determined by evaluation of haplotypes of associated family members; in 100% of these cases, the wild-type allele was lost. In some of these families germline mutations in BRCA1 have been determined; analyses of tumors with LOH at BRCA1 have revealed that only the disease-related allele of BRCA1 was present. These data strongly support the hypothesis that BRCA1 is a tumor suppressor gene.  相似文献   

12.
We extend the evaluation of allelic loss patterns on chromosome 17 to papillary serous carcinoma of the peritoneum (PSCP) which is histologically identical to papillary serous ovarian carcinoma (PSOC). DNA was obtained from 11 archival cases of PSCP, with 1-11 tumor sites per case. Using ten loci spanning chromosome 17, loss of heterozygosity (LOH) was identified in all 11 cases (100%). Furthermore, 75-100% of informative cases exhibited LOH at the loci p53, D17S1322 (intragenic to the tumor suppressor gene BRCA1), D17S1327 and MPO. PSCP cases exhibit a higher rate of LOH at most loci when compared with PSOC. Alternating allelic loss at different tumor sites was identified in three cases supporting a multifocal origin of PSCP. Microsatellite instability (MI) is an uncommon event which was identified in four cases. These data implicate chromosome 17 as a potential location of genetic events important in the pathogenesis of PSCP as well as ovarian cancer.  相似文献   

13.
Frequent allelic losses on chromosome 9 are seen in a wide variety of human tumors; moreover, two genes (P16 and PTC) whose mutant alleles confer predispositions to some inherited cancer syndromes have been identified on this chromosome. Using 15 highly polymorphic microsatellite markers distributed on both arms of chromosome 9, we tested 96 primary breast carcinomas for allelic loss in order to define the locations of genes that might be involved in this type of tumor. Allelic loss was observed in 37 of the tumors (39%) and detailed deletion mapping identified target regions at 9p21, 9q22.3 and 9q33. Losses at 9q22.3 and 9q33 were correlated with the presence of lymph node metastasis, and allelic loss at 9q22.3 was observed more frequently in scirrhous tumors than in less aggressive histologic types. Therefore, inactivation of tumor suppressor genes in 9q22.3 and 9q33 regions might play a role in progression of breast cancers, especially in metastasis to lymph nodes and in development of scirrhous tumors.  相似文献   

14.
Hepatocellular carcinoma (HCC) frequently shows a loss of heterozygosity (LOH) on chromosome 4q. In order to define the commonly affected region on chromosome 4q for further positional cloning of the putative tumor suppressor gene, we carried out allelic imbalance (AI) studies in 41 HCCs using a panel of 43 microsatellite markers. Thirty-four cases (82.9%) showed AI at one or more loci. Detailed deletion mapping identified 7 independent, frequently deleted regions on this chromosome arm. These were the (1) D4S1615 locus, (2) D4S1598 locus, (3) D4S620 locus, (4) D4S1566 and D4S2979 loci, (5) D4S1617 and D4S1545 loci, (6)D4S1537 locus; and (7) from the D4S2920 to D4S2954 locus. Among these 7 frequently deleted regions, 5 were associated with tumor differentiation. Our results suggest that several putative tumor suppressor genes may be present on chromosome 4q and that the AI of chromosome 4q may play a role in the aggressive progression of HCC.  相似文献   

15.
The loss of genetic material on chromosome 10q is frequent in different tumors and particularly in malignant gliomas. We analyzed 90 of these tumors and found loss of heterozygosity (LOH) in >90% of the informative loci in glioblastoma multiforme (GBM). Initial studies restricted the common LOH region to 10q24-qter. Subsequently, the study of a pediatric GBM suggested D10S221 and D10S209, respectively, as centromeric and telomeric markers of a 4-cM LOH region. It is interesting to note that, in one subset of cells from this tumor, locus D10S209 seems involved in the allelic imbalance of a larger region, with D10S214 as telomeric marker. This 17-cM region contains the D10S587-D10S216 interval of common deletion recently defined on another set of gliomas.  相似文献   

16.
Detailed deletion mapping of chromosome 6q has shown that the highest percentage of loss of heterozygosity (LOH) is located at 6q25-q27 and suggested that an ovarian cancer associated tumor suppressor gene may reside in this region. To further define the smallest region of common loss, we used 12 tandem repeat markers spanning a region no more than 18 cM, located between 6q25.1 and 6q26, to examine allelic loss in 54 fresh and paraffin embedded invasive ovarian epithelial tumor tissues. Loss of heterozygosity was observed more frequently at the loci defined by marker D6S473 (14 of 32 informative cases, 44%) and marker D6S448 (17 of 40 informative cases, 43%). Detailed mapping of chromosome 6q25-q26 in these tumor samples identified a 4 cM minimal region of LOH between markers D6S473 and D6S448 (6q25.1-q25.2). Loss of heterozygosity at D6S473 correlated significantly both with serous versus non-serous ovarian tumors (P=0.040) and with high grade versus low grade specimens (P=0.023). The results suggest that a 4 cM deletion unit located at 6q25.1-q25.2 may contain the putative tumor suppressor gene which may play a role in the development and progression of human invasive epithelial ovarian carcinomas (IEOC).  相似文献   

17.
A recent report has provided strong evidence for a major prostate cancer susceptibility locus (HPC1) on chromosome 1q24-25 (Smith et al, 1996). Most inherited cancer susceptibility genes function as tumour-suppressor genes (TSGs). Allelic loss or imbalance in tumour tissue is often the hallmark of a TSG. Studies of allelic loss have not previously implicated the chromosomal region 1q24-25 in prostate cancer. However, analysis of tumour DNA from cases in prostate cancer families has not been reported. In this study, we have evaluated DNA from tissue obtained from small families [3-5 affected members (n = 17)], sibling pairs (n = 15) and sporadic (n = 40) prostate tumours using the three markers from Smith et al (1996) that defined the maximum multipoint linkage lod score. Although widely spaced (12-50 cM), each marker showed evidence of allelic imbalance in only approximately 7.5% of informative tumours. There was no difference between the familial and sporadic cases. We conclude that the incidence of allelic imbalance at HPC1 is low in both sporadic tumours and small prostate cancer families. In this group of patients, HPC1 is unlikely to be acting as a TSG in the development of prostate cancer.  相似文献   

18.
Loss of heterozygosity on chromosome 11q23.3-qter is a frequent event in ovarian carcinoma, implying the existence of an important ovarian tumor suppressor gene(s) within the region. To refine a minimum region(s) of loss, 67 ovarian tumors were analyzed for loss of heterozygosity with eight microsatellite markers spanning 11q23.3-qter. Forty tumors (61%) demonstrated allelic losses. Twenty-seven of these had allelic losses on only part of 11q23.3, which enabled the identification of two distinct regions likely to harbor ovarian tumor suppressor genes. The proximal region, flanked by markers D11S925 and D11S1336, is less than two megabases while the second more distal region, flanked by markers D11S912 and D11S439, is approximately eight megabases. The refinement of these candidate tumor suppressor gene loci will facilitate future loss of heterozygosity studies and enable the isolation of candidate genes from these regions.  相似文献   

19.
Loss of heterozygosity (LOH) of chromosomal arm 8p has been reported to occur at high frequency for a number of common forms of human cancer, including breast cancer. The objectives of this study were to define the regions on this chromosomal arm that are likely to contain breast cancer tumor suppressor genes and to determine when loss of chromosomal arm 8p occurs during breast cancer progression. For mapping the tumor suppressor gene loci, we evaluated 60 cases of infiltrating ductal cancer for allelic loss using 14 microsatellite markers mapped to this chromosomal arm and found LOH of 8p in 36 (60%) of the tumors. Whereas most of these tumors had allelic loss at all informative markers, five tumors had partial loss of 8p affecting two nonoverlapping regions. LOH for all but one of the tumors with 8p loss involved the region between markers D8S560 and D8S518 at 8p21.3-p23.3, suggesting that this is the locus of a breast cancer tumor suppressor gene. We then studied LOH of 8p in 38 cases of ductal carcinoma in situ (DCIS) with multiple individually microdissected tumor foci evaluated for each case. LOH of 8p was found in 14 of the DCIS cases (36%), including 6 of 16 cases of low histological grade and 8 of 22 cases of intermediate or high histological grade. In four of these DCIS cases, 8p LOH was seen in some but not all of the multiple tumor foci examined. These data suggest that during the evolution of these tumors, LOH of 8p occurred after loss of other chromosomal arms that were lost in all tumor foci. Thus, LOH of 8p, particularly 8p21.3-p23, is a common genetic alteration in infiltrating and in situ breast cancer. Although 8p LOH is common even in low histological grade DCIS, this allelic loss often appears to be preceded by loss of other alleles in the evolution of breast cancer.  相似文献   

20.
Alterations of chromosome 7 are among the most frequent cytogenetic abnormalities found in human breast carcinoma. We examined genetic changes on chromosome 7 in 113 primary human breast tumors, using both microsatellite and restriction fragment length polymorphism/variable number of tandem repeats polymorphism markers mapping to the long arm (15 markers) and the short arm (8 markers). Allelic imbalance at 1 or more loci was observed in 50 (44%) of 113 tumors on the long arm of chromosome 7 and in 41 (36%) tumors on the short arm. Genetic changes of one arm were significantly associated with alterations of the other arm. The 50 7q-altered tumor DNAs exclusively showed a loss of heterozygosity (LOH), 23 (46%) at all informative loci tested on 7q and 27 (54%) at some loci (interstitial and/or telomeric deletions on 7q). The pattern of LOH of these 27 tumors enabled us to identify 3 distinct consensus regions of deletions on 7q, only 1 of which (7q31 region) has already been described in breast cancer. Among the 41 7p-altered tumor DNAs, 32 had a gain and/or loss of the entire short arm of chromosome 7. Fourteen tumor DNAs showed an allelic gain, and 18 tumor DNAs showed a LOH at each locus on the short arm. The other 9 7p-altered tumors showing partial random alterations of chromosome 7p revealed no common altered regions. This is the first report of an association between alterations of DNA sequences on chromosome 7p and breast cancer. The results suggest that tumor suppressor genes are present on the long arm of chromosome 7 and are associated with breast tumorigenesis. Moreover, the frequent loss or gain of a whole copy of chromosome 7p suggests the involvement of a gene dosage effect of this chromosomal arm in the pathogenesis of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号