首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 4 毫秒
1.
The structures of intermetallic alloy layers formed during immersion of H13 tool steel into an aluminium die casting alloy melt have been studied by X-ray diffraction. Energy dispersive spectroscopy (EDS) analysis on the intermetallic phases was also conducted. A thick composite layer away from the H13 steel substrate consisted of irregular intermetallics and solidified cast alloy. A thin intermetallic layer was present between the thick composite layer and an inner compact layer next to the steel substrate. The intermetallic phase in the composite layer was found to have a cubic structure, bcc-(FeSiAlCrMnCu). The thin layer was identified to be structurally isomorphous with hexagonal H-Fe2SiAl8. The compositional difference between H and bcc intermetallic phases was mainly that the latter consisted of a higher amount of Cr+Mn+Cu. This is consistent with the suggestion that chromium, manganese and copper stabilise bcc phase at the expense of H phase. The inner compact layer next to the steel substrate was identified to be isomorphous with orthorhombic η-Fe2Al5.  相似文献   

2.
Abstract

Controlling and eliminating defects, such as macroporosity, in castings is a continuing challenge that manufacturers must continually address. Since the encapsulation of liquid regions by a solid shell and subsequent formation of macroporosity cannot be detected during casting, the die temperature, which is routinely measured, has been used as an indirect indicator of this defect. A finite element model has been developed to predict the evolution of temperature as well as the volume of encapsulated liquid in a casting with a high propensity to form macroporosity. The boundary conditions in the model were iteratively adjusted until the temperature predictions matched the experimental data for a variety of operational conditions. A model based methodology has been developed to analyse the correlation between the die temperature and the encapsulated liquid volume. This methodology is employed to assess the suitability of different in-cycle die temperatures for use as indicators of macroporosity formation, and to help determine the optimal location to monitor temperature for the purpose of minimising macroporosity.  相似文献   

3.
不同表面处理工艺压铸镁合金涂层耐蚀性研究   总被引:3,自引:0,他引:3  
为了研究不同表面处理工艺下压铸镁合金涂层的抗腐蚀性能,通过浸泡腐蚀和电化学腐蚀的方法,比较了微弧氧化和无铬化学氧化等表面处理试样的耐蚀性.结果表明,无铬化学氧化和微弧氧化处理能显著提高镁合金表面耐蚀性,而以微弧氧化处理更优;且两种处理方法覆盖层对孔洞、裂纹不敏感.根据交流阻抗图谱,拟合得到了微弧氧化、无铬化学氧化和未处理三种试样电化学腐蚀时体系的等效电路,拟合结果与实测结果吻合.XRD分析表明这两种处理方法得到的覆盖层中主体相均为Mg3Al2Si3O12等含硅的尖晶石型氧化物和Mg0.36Al2.44O4、MgAl2O4等不含硅的镁、铝复合氧化物,有利于提高镁合金耐蚀性.  相似文献   

4.
The effect of the welding speed and the rotation speed on the microstructure in the stir zone has been investigated by measuring the Si particle distribution in the ADC12 alloy. The stir zone has fine recrystallized grains without dendritic structures, and the eutectic Si was uniformly dispersed in the stir zone. The size of the Si particles was statistically determined in the stir zone using image processing. The number of finer Si particles, which is formed by stirring of the tool probe, increases during the FSW. Finer Si particles are distributed more in the bottom than in the other regions, though the size of the Si particles in the base metal is the same in all the regions. The size of the Si particles decreases with increasing welding speed. However, it is not significantly affected by the rotation speed.  相似文献   

5.
6.
对AZ91D压铸镁合金进行GTAW焊接,对一组试样熔池施加介入性机械搅拌,另一组试样则无机械搅拌;焊后对两组试样分别用光学显微镜和扫描电镜观察焊缝气孔形貌和分布、焊缝微观组织,并采用基于Matlab软件二次开发的图像分析程序识别和计算焊缝气孔率。结果表明,介入性机械搅拌除改善焊缝成形外观、细化焊缝微观组织外,明显降低了焊缝气孔尺寸和焊缝气孔率;降低气孔率的主要机理应该是搅拌加强了熔池金属液流动和气泡的运动,使气泡上浮和逸出速度加快。  相似文献   

7.
Recent discoveries of stress corrosion cracking (SCC) in weldments including penetration nozzles at pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It is well known that welding residual stress is an important factor resulting in SCC in weldments. In the present work, both experimental method and numerical simulation technology are used to investigate the characteristics of welding residual stress distribution in penetration nozzles welded by multi-pass J-groove joint. An experimental mock-up is fabricated to measure welding residual stress at first. In the experiment, each weld pass is performed using a semi-circle balanced welding procedure. Then, a corresponding finite element models with considering moving heat source, deposition sequence, inter-pass temperature, temperature-dependent thermal and mechanical properties, strain hardening and annealing effect is developed to simulate welding temperature and residual stress fields. The simulation results predicted by the 3D model are generally in good agreement with the measurements. Meanwhile, to clarify the influence of deposition sequence on the welding residual stress, the welding residual stress field in the same geometrical model induced by a continuous welding procedure is also calculated. Finally, the influence of a joint oblique angle on welding residual stress is investigated numerically. The numerical results suggest that both deposition sequence and oblique angles have effect on welding residual stress distribution.  相似文献   

8.
Abstract

In this study, the stress relaxation has been measured experimentally and has been also calculated numerically by the finite element method in the A356·0 aluminium–silicon–magnesium alloy, under out-of-phase thermomechanical cyclic loadings. To get this objective, strain based thermomechanical fatigue tests were performed on cylindrical specimens, at an out-of-phase condition. In this loading condition, when the temperature was maximum, the mechanical strain was compressive and vice versa. These fatigue experiments were repeated at various dwell times, in which the temperature was held at the maximum temperature. This hold time was considered as 5, 30, 60 and 180 s and then the stress relaxation was measured during the mid-life cycle of each test. Besides, the finite element analysis was also conducted on the material to simulate the stress relaxation numerically. A two-layer visco-plastic model was applied to simulate the high temperature cyclic behavior of the material. Finite element results showed a good agreement with experimental results, which were obtained from thermomechanical fatigue tests on the A356·0 aluminium alloy. The two-layer visco-plastic model could properly predict the stress relaxation at elevated temperatures, during various dwell times.  相似文献   

9.
The thermal mold design and the identification of a proper cooling channel design are primordial steps in the development of complex molds for injection molding. In order to find a suitable cooling channel system, a lot of effort is needed to avoid part warpage after solidification. In current research, a simulative procedure to optimize the cooling channel layout iteratively is being developed at the Institute of Plastics Processing. These algorithms are transferred to the metal gravity die casting process, which has several similar requirements to the mold. Effectively, the simulation is simplified to a heat conduction problem. Instead of water, high temperature resistant oil is deployed and the casted material is a A356 aluminum alloy instead of semi‐crystalline plastics. The algorithm is adapted to these changed boundary conditions and the calculation of the optimized heat distribution is performed. Aim of this procedure is the construction of a mold producing parts with less warpage than a conventional mold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号