首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The nano-crystalline B3+ and F? co-doped titanium dioxide films were successfully prepared by the improved sol–gel process. The as-prepared specimens were characterised using X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FE-SEM), the Brunauer–Emmett–Teller (BET) surface area, X-ray photo-electron spectroscopy, photoluminescence spectra and UV–Vis diffuse reflectance spectroscopy. The photo-catalytic activities of the films were evaluated by degradation of an organic dye in aqueous solution. The results of XRD, FE-SEM and BET analysis indicated that the TiO2 films were composed of nano-particles. B3+ and F? co-doping could obviously not only suppress the formation of brookite phase but also inhibit the transformation of anatase to rutile at high temperature. Diffuse reflectance measurements showed that co-doping could clearly extend the absorbance spectra of TiO2 into visible region. Compared with pure TiO2, B3+ doped or F? doped TiO2 film, the B3+ and F? co-doped TiO2 film exhibited excellent photo-catalytic activity. It is believed that the surface microstructure of the films and the doping methods of the two ions are responsible for improving the photo-catalytic activity.  相似文献   

2.
In this study, we have successfully deposited N-doped SiO2/TiO2 thin films on ceramic tile substrates by sol–gel method for auto cleaning purpose. After dip coating and annealing process the film was transparent, smooth and had a strong adhesion on the ceramic tile surface. The synthesised catalysts were then characterised by using several analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM) and UV-vis absorption spectroscopy (UV-vis). The analytical results revealed that the optical response of the synthesised N-doped SiO2/TiO2 thin films was shifted from the ultraviolet to the visible light region. The nitrogen substituted some of the lattice oxygen atoms. The surface area of co-doped catalyst increased, and its photocatalytic efficiency was enhanced. The photocatalytic tests indicated that nitrogen co-doped SiO2/TiO2 thin films demonstrated higher than of the SiO2/TiO2 activity in decolouring of methylene blue under visible light. The enhanced photocatalytic activity was attributed to an increasing of the surface area and a forming of more hydroxyl groups in the doped catalyst.  相似文献   

3.
This study investigated the photocatalytic behavior of the coupling of TiO2 with phosphorescent materials. A TiO2 thin film was deposited on CaAl2O4:Eu2+,Nd3+ phosphor particles by using atomic layer deposition (ALD), and its photocatalytic reaction was investigated by the photobleaching of an aqueous solution of methylene-blue (MB) under visible light irradiation. To clarify the mechanism of the TiO2-phosphorescent materials, two different samples of TiO2-coated phosphor and TiO2–Al2O3-coated phosphor particles were prepared. The photocatalytic mechanisms of the ALD TiO2-coated phosphor powders were different from those of the pure TiO2 and TiO2–Al2O3-coated phosphor. The absorbance in a solution of the ALD TiO2-coated phosphor decreased much faster than that of pure TiO2 under visible irradiation. In addition, the ALD TiO2-coated phosphor showed moderately higher photocatalytic degradation of MB solution than the TiO2–Al2O3-coated phosphor did. The TiO2-coated phosphorescent materials were characterized by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS).  相似文献   

4.
The photocatalytic oxidation of the azo dye Orange-II (Or-II) using Fe loaded TiO2 (Fe–TiO2) was studied under ultraviolet (UV), visible (vis) and simultaneous UV–vis irradiations using a solar light simulator. Photocatalysts were characterized by means of XRD, SEM-EDX, FTIR and DRS. Fe3+ species, identified in XPS analyses, were responsible of the increased absorption of visible light. Moreover, DRS analyses showed a decrease in the bandgap due to Fe3+ loading. Photocatalystic tests proved that Fe modification enhanced the TiO2 photocatalytic activity towards Or-II photodegradation under simultaneous UV–vis irradiation. Even so, the performance of the Fe–TiO2 samples towards the photodegradation of phenol, under UV irradiation, was lower than TiO2 suggesting the recombination of the UV photogenerated electron–hole pair. Therefore, results evidence a Fe3+ promotion of the electron caption in the photosensitization process of TiO2 by Or-II acting as a sensitizer. Such process leads to the Or-II photooxidation under UV–vis irradiation by losing energy in electron transferring processes to sensitize TiO2, and, the formation of reactive oxygen species promoted by the injected electron to the TiO2 conduction band.  相似文献   

5.
Highly active photocatalytic Fe-doped nano TiO2 was successfully synthesised by chemical vapour deposition (CVD) method using FeCl3 as Fe source. CVD was carried out by evaporating FeCl3 at 350°C in nitrogen flow during 30–90?min. The amount of Fe incorporated into TiO2 framework is adjusted by the amount of FeCl3 used and the evaporation time. The obtained sample was characterised by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), energy dispersive X-ray spectroscopy (EDS), UV-Vis, Fourier transform-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of the samples were tested in photocatalytic decomposition of 2-propanol in liquid phase using visible light instead of UV light irradiation. Non-doped TiO2 and high Fe loading TiO2 samples showed very low photocatalytic activity, whereas the low Fe loading TiO2 sample exhibited high photocatalytic activity under visible light. The high photocatalytic activity of this sample was rationalised by the existence of defects (Ti–OH groups) as the active sites.  相似文献   

6.
A novel In2S3/TiO2 composite with visible-light photocatalytic activity was prepared by a chemical precipitation method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope and UV–vis diffuse reflectance spectroscopy. Under both UV- and visible-light irradiation, the In2S3/TiO2 composite shows good photocatalytic activity to degrade methyl orange, ascribed to the absorption of visible light by In2S3 sensitizer and enhanced separation of photoinduced electron–hole pairs in the composite semiconductors.  相似文献   

7.
N–I co-doped TiO2 nanoparticles were prepared by hydrolysis method, using ammonia and iodic acid as the doping sources and Ti(OBu)4 as the titanium source. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS). XRD spectra show that N–I–TiO2 samples calcined at 673 K for 3 h are of anatase structure. XPS analysis of N–I–TiO2samples indicates that some N atoms replace O atoms in TiO2 lattice, and I exist in I7+, I and I5+ chemical states in the samples. UV–vis DRS results reveal that N–I–TiO2 had significant optical absorption in the region of 400–600 nm. The photocatalytic activity of catalysts was evaluated by monitoring the photocatalytic degradation of methyl orange (MO). Compared with P25 and mono-doped TiO2, N–I–TiO2 powder shows higher photocatalytic activity under both visible-light (λ > 420 nm) and UV–vis light irradiation. Furthermore, N–I–TiO2 also displays higher COD removal rate under UV–vis light irradiation.  相似文献   

8.
较差的光催化产氢效率极大地阻碍了TiO2光催化剂的工业化应用。为此,本文在含有NH4VO3的磷酸盐溶液中,采用等离子体电解氧化(PEO)法制备了多孔TiO2/V2O5复合膜光催化剂,通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)、X射线光电子谱(XPS)和紫外可见漫反射光谱(UV-Vis DRS)对其组成、结构及光吸收性质进行了表征,并采用气相色谱评价了薄膜催化剂的光催化产氢性能,研究了电解液中NH4VO3含量对膜的结构、组成和光催化产氢性能的影响。结果表明:复合膜催化剂主要由锐钛矿和金红石型TiO2组成,具有微孔结构,V2O5主要以无定形形式存在于膜中,与TiO2有很强的相互作用,影响TiO2的晶面间距。研究发现,元素V抑制了TiO2的结晶和金红石型TiO2的形成,扩大了薄膜的光学吸收范围。针对Na2S+ Na2SO3溶液中的光催化产氢性能的研究显示,在质量浓度为1 g/L NH4VO3的电解液中制备的TiO2/V2O5薄膜的光催化活性最高,优于近年来报道的其他光催化剂。光催化重复实验表明,该复合膜催化剂具有较高的稳定性和较为恒定的光催化活性。  相似文献   

9.
Xiaozheng Yu  Zhigang Shen 《Vacuum》2011,85(11):1026-1031
In the present study, TiO2 films were deposited on the surface of cenosphere particles using the modified magnetron sputtering equipment under different working conditions. The resulting films were characterized by field emission scanning electron microscopy (FE-SEM), Atomic Force Microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The FE-SEM and AFM results show that the grain sizes and root-mean-square (RMS) roughness values of the TiO2 films increase with the increase in deposition time and film thickness. The XRD results indicate that the film was TiO2 film and sputtering time is an importance condition to influence the films crystal. With the increasing of sputtering time, the crystallization of the TiO2 film was increased. The XPS results show that only TiO2 films existed on the surface of cenosphere particles. In addition, the photocatalytic activities of these films were investigated by degrading methyl orange under UV irradiation. The results suggest that the photocatalytic activity of cenosphere particles with anatase TiO2 films is remarkable and this catalyst can be applicable for the photocatalytic degradation of other organic compounds under UV lights.  相似文献   

10.
The nanocrystalline S doped titanium dioxide films were successfully prepared by the improved sol-gel process. Here TiO(C4H9O)4 and CS(NH2)2 were used as precursors of titania and sulfur, respectively. The as-prepared specimens were characterized using x-ray diffraction (XRD), x-ray energy dispersive spectroscopy (EDS), high-resolution field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) surface area, and ultraviolet-visible diffuse reflectance spectroscopy. The photocatalytic activities of the films were evaluated by degradation of organic dyes in aqueous solution. The results of XRD, FE-SEM, and BET analyses indicated that the TiO2 films were composed of nanoparticles. S doping could obviously not only suppress the formation of brookite phase but also inhibit the transformation of anatase to rutile at high temperature. Compared with pure TiO2 film, S doped TiO2 film exhibited excellent photocatalytic activity. It is believed that the surface microstructure of the modified films is responsible for improving the photocatalytic activity.  相似文献   

11.
Iron (III) and niobium (V)-codoped TiO2 nanopowders have been synthesized by Ar/O2 RF thermal plasma. Phase composition, morphology, and photocatalytic performance of the plasma-generated powders have been investigated by the combined means of XRD, FE-SEM/TEM, and UV-vis absorption spectroscopy. Rutile formation in the plasma-produced phase composition of anatase and rutile was promoted by Fe3+ addition but was inhibited by Nb5+ doping. The resultant powders consisted of a majority of fine crystallites (several nanometers) and a small portion of coarse particles (~ 100 nm). In comparison with TiO2 singly doped with 0.1 at.% of Fe3+, photocatalytic reactivity of codoped TiO2 was improved at 2.0 at.% of Nb5+ but was depressed at 6.0 at.% under the UV irradiation, indicating that UV-induced photocatalytic capability was dominated by Nb5+ doping concentration. In contrast to the case of 1.0 at.% of Fe3+ single addition, the codoped sample obtained the decreased photocatalytic performance with increasing Nb5+ content under the visible light irradiation, due to the low visible light absorption resulting from a broadened band gap.  相似文献   

12.
The TiO2-doped SiO2 composite films were prepared by two-step sol-gel method and then it was applied in the degradation of methylene red (MR) as photocatalysts. In XRD, FT-IR, and TEM investigations of these TiO2-doped SiO2 composite films, the titanium oxide species are highly dispersed in the SiO2 matrixes and exist in a tetrahedral form. And special attention has been focused on the relationship between the local structure of the titanium oxide species in the TiO2-doped SiO2 composite films and the photocatalytic reactivity in order to provide vital information for the design and application of such highly efficient photocatalytic systems in the degradation of toxic compounds diluted in a liquid phase.  相似文献   

13.
The nanocomposite oxide (0.2TiO2-0.8SnO2) doped with Cd2+ powder have been prepared and characterized by XRD and their gas-sensing sensitivity were characterized using gas sensing measurement. Experimental results show that, bicomponent nano anatase TiO2 and rutile SnO2 particulate thick film doped with Cd2+ behaves with good sensitivity to formaldehyde gas of 200 ppm in the air, and the optimum sensing temperature was reduced from 360 °C to 320 °C compared with the undoped Cd2+ thick film. The gas sensing thick films doped with Cd2+ also show good selectivity to formaldehyde among benzene, toluene, xylene and ammonia as disturbed gas and could be effectively used as an indoor formaldehyde sensor.  相似文献   

14.
Boron doped TiO2 thin films have been successfully deposited on glass substrate and silicon wafer at 30°C from an aqueous solution of ammonium hexa-fluoro titanate and boron trifluoride by liquid phase deposition technique. The boric acid was used as an F scavenger. The resultant films were characterized by XRD, EDAX, UV and microstructures by SEM. The result shows the deposited film to be amorphous which becomes crystalline between 400 and 500°C. The EDAX and XRD data confirm the existence of boron atom in TiO2 matrix and a small peak corresponding to rutile phase was also found. Boron doped TiO2 thin films can be used as photocatalyst for the photodegradation of chlorobenzene which is a great environmental hazard. It was found that chlorobenzene undergoes degradation efficiently in presence of boron doped TiO2 thin films by exposing its aqueous solution to visible light. The photocatalytic activity increases with increase in the concentration of boron.  相似文献   

15.
Transparent antireflective SiO2/TiO2 double layer thin films were prepared using a sol–gel method and deposited on glass substrate by spin coating technique. Thin films were characterized using XRD, FE-SEM, AFM, UV–Vis spectroscopy and water contact angle measurements. XRD analysis reveals that the existence of pure anatase phase TiO2 crystallites in the thin films. FE-SEM analysis confirms the homogeneous dispersion of TiO2 on SiO2 layer. Water contact angle on the thin films was measured by a contact angle analyzer under UV light irradiation. The photocatalytic performance of the TiO2 and SiO2/TiO2 thin films was studied by the degradation of methylene blue under UV irradiation. The effect of an intermediate SiO2 layer on the photocatalytic performance of TiO2 thin films was examined. SiO2/TiO2 double layer thin films showed enhanced photocatalytic activity towards methylene blue dye.  相似文献   

16.
Polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres have been successfully synthesized by sol–gel reactions on Fe3O4 microspheres followed by the chemical oxidative polymerization of aniline. The synthesized multilayer-structured composites were characterized by TEM, XRD, TGA, UV–vis diffuse reflectance spectra and magnetometer. The photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light. The effect of polyaniline (PANI) amounts on the photocatalytic activity was investigated. The photocatalytic activity results show that the Fe3O4/SiO2/TiO2 composites with about 2.4 wt.%–4.1 wt.% PANI could show higher photocatalytic efficiency than that of Fe3O4/SiO2/TiO2. Furthermore, the PANI-Fe3O4/SiO2/TiO2 photocatalyst could be easily recovered using a magnet.  相似文献   

17.
In this work, Fe-doped (1?wt%) TiO2 loaded on the activated carbon nano-composite was prepared using a sol-gel method. A prepared nano-composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), BET surface area, Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) spectroscopy and UV–Vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the nano-composite was evaluated through degradation of synthetic textile wastewater, reactive red 198, under visible light irradiations. The XRD result indicated that the TiO2 nano-composite contained only anatase phase. The surface area of the TiO2 increased from 48?m2/g to 100?m2/g through the fabrication of the nano-composite. The FE-SEM results indicate that the TiO2 particles with an average particle size of 35–70?nm can be deposited homogeneously on the activated carbon surface. DRS showed that the Fe doping in the TiO2 -activated carbon nano-composite induced a significant red shift of the absorption edge and then the band gap energy decreased from 3.3 to 2.9?eV. Photocatalytic results indicated that the photocatalytic activity of the Fe doped TiO2 increased under visible light irradiation in the presence of the activated carbon.  相似文献   

18.
White colored N-doped TiO2 and a neat TiO2 powder were synthesized via sol–gel method. Prepared samples were characterized by means of x-ray diffractions, Brunauer–Emmet–Teller and Barrett–Joyner–Halenda methods, x-ray photoelectron spectroscopy, ultraviolet-visible analysis, scanning electron microscopy, and energy dispersive x-ray spectroscopy. Both of the N-doped TiO2 and neat TiO2 consisted of anatase phase of titania with mesoporous nature and according to XPS analysis prepared N-doped TiO2 is a substitutional nitrogen containing sample. The band gap of N-doped TiO2 and neat TiO2 were estimated from ultraviolet-visible spectroscopy data to be 2.7 and 3.2 eV, respectively. Prepared substitutional N-doped TiO2 featured steep light absorption edge with an approximately parallel characteristic of its absorption edge to that neat TiO2. This is due to its band-to-band visible light absorption ability. Synthesized N-doped TiO2 had a large surface area value of 193 m2/g and high photon absorption ability causing superior photocatalytic properties towards Congo red azo dye compared to neat TiO2 either under ultraviolet or visible light illumination.  相似文献   

19.
The present work investigates the photocatalytic reduction of CO2 to CH3OH with a PbSe-G-TiO2 photocatalyst. A heterogeneous PbSe-G-TiO2 nanocomposite was prepared via ultra-sonication and was characterized via XRD, SEM, HRTEM, Raman, XPS, and DRS measurements. The photocatalytic efficiencies of the prepared sample were further characterized by GC for the photoreduction of CO2 to CH3OH under UV and visible light. The prepared PbSe-G-TiO2 ternary nanocomposites with an optimum GO loading of 6% exhibited outstanding photocatalytic activity (4.35 µmol g?1 h?1) after 48 hours of reaction. This indicated that the photocatalytic efficiency was mostly dependent on the weight ratio of graphene, sacrificial material Na2SO3/Na2S, and the type of reactant. This work provides an accessible way to improve the response of a graphene-based TiO2 photocatalyst to UV/visible light and to facilitate its application in environmental remediation.  相似文献   

20.
GR–TiO2 nanocomposite was prepared by simple chemical method using graphene oxide and titanium isopropoxide (Ti [OCH (CH3)2]4) precursors. The crystalline nature of the composite was characterised by powder X-ray diffraction and the intercalation was explained by Raman spectroscopy. The morphology of the composite was analysed by field emission scanning electron microscopy. The elemental and quantitative measurement of the composite was determined by electron dispersive spectroscopy. The shape and size of the particle was measured by transmission electron spectroscopy and high resolution spectroscopy. The surface area and elemental composition of the composite was studied by using Brunauer–Emmett–Teller (BET) method and X-ray photoelectron spectroscopy. Photo-generated electrons were studied by photoluminescence spectra. The photocatalytic activity of nanocomposite was investigated by the degradation of Rhodamine-B (Rh-B) in an aqueous solution under solar light irradiation. The GR–TiO2 demonstrates photocatalytic activity in the degradation with a removal rate of 98% under solar light irradiation as compared with pure TiO2 (42%), graphite oxide (19%), and mechanical mixture GR + TiO2 (60%) due to the increased light absorption intensity and reduction of electron–hole pair recombination with the intercalation of graphene and TiO2. The results indicated that the GR–TiO2 could be used as a catalyst to degrade Rh-B from coloured wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号