首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Herein, we report a green synthetic strategy using aqueous leaves extract of Actinodaphne madraspatna Bedd (AMB) for the synthesis of ZnO NPs. The physical shape, size, thermal stability, surface area, surface composition and chemical state, morphological and optical properties of the synthesized ZnO NPs are well characterized through UV–Visible diffuse reflectance spectroscopy (DRS UV), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis–differential thermal analysis (TGA–DTA), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) and X-ray photon spectroscopy (XPS). FT-IR spectrum of ZnO NPs showed a characteristic peak at 416.62 cm?1. Optical studies of prepared ZnO NPs showed the bandgap values are reduced in the range of 3.05 to 2.96 eV. The XRD and TEM data revealed the synthesized ZnO NPs exist in wurtzite crystal structure with crystallite sizes of 18 nm to 68 nm range. The variation in bandgap, surface area and crystallite structure of ZnO NPs would be achieved by changing the experimental parameters. FESEM showed spherical-shaped structure. XPS result confirmed the atomic states of Zn and O. The green synthesized ZnO NPs were examined for the photocatalytic degradation of methylene blue (MB) and acid violet 17 (AV17) dyes under UV light and the rate constants ‘k’ was calculated. It is found that the green synthesized ZnO NPs with reduced bandgap showed enhanced photocatalytic activity with higher rate constant.

  相似文献   

2.
The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV–visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail.  相似文献   

3.
In our present study, firstly; cadmium zinc sulfide (CdZnS) nanoparticles (NPs) with 1, 2, 5, 10% of Zn concentration were synthesized in aqueous solution by simple chemical co-precipitation method and their photocatalytic activity was investigated using the degradation of methylene blue under visible light in air at room temperature. It was found that CdZnS NPs with 2% of Zn concentration indicates the highest degradation efficiency compare to other Zn concentrations. CdZnS NPs with 2% of Zn concentration was symbolized as CdZnS_1. Later; 0.1, 0.2, 0.5, 1, 5, 10% of cobalt (Co) concentration was separately alloyed on the CdZnS_1 NPs. It was oberved that Co(5%):CdZnS NPs has the highest degradation efficiency. Structure, surface morphology, elemental analysis and optical properties of CdZnS_1 and Co (5%): CdZnS NPs 0were analyzed using X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray and UV–Vis absorption measurements, respectively. The results showed that Co doped CdZnS NPs can be employed as capable materials to ehance the photocatalytic activity.  相似文献   

4.
Plasmonic photocatalysts are promising candidates for use in the degradation of pollutants. Their ability to degrade a wide range of organic pollutants stems from key properties such as high visible light absorption, the ability to generate hot electrons and the formation of a Schottky barrier that facilitates effective separation of charge carriers. In the present work, we synthesised bismuth oxychloride sensitised with gold nanoparticles (NPs, 20–50 nm) via a two-step chemical process at low temperature. The fabricated Au/BiOCl powder was evaluated in the degradation of Rhodamine B (RhB) dye under visible light irradiation. The photocatalytic performance of the Au/BiOCl hybrid was almost double that of pristine BiOCl. This enhanced performance was attributed to electron transfer from BiOCl to Au via the formation of heterojunctions at the BiOCl/Au interface. Additionally, the surface plasmon resonance effect of the Au NPs provided high optical absorbance in the visible spectrum. TEM (transmission electron microscopy) analysis indicated the presence of polar (010) facets on the BiOCl sheets, which also contributed to dramatically improving their photocatalytic performance. The degradation time of the Au/BiOCl hybrid was 200 min compared with 320 min for pure BiOCl.  相似文献   

5.
Copper sulphide (CuS) nanomaterials with interesting morphology were synthesised using copper nitrate trihydrate, thiourea and water as a solvent by a simple hydrothermal route. A systematic investigation was carried out to investigate the effect of reaction time (5, 16 and 24?h) at 150°C on the morphology of the materials. Without the use of any template or additives, shape controlled synthesis of CuS nanocrystallites were achieved. The possible mechanism for the formation of the various nanostructures of CuS in this system is discussed. The prepared materials were characterised by X-ray diffraction, field emission scanning electron microscopy (FE-SEM) and DRS-UV–Vis absorption analysis. The UV–Vis spectrum shows that it is the promising material which can absorb in the visible region and hence could be used for photocatalytic applications. In addition, the electrochemical characteristic of the synthesised material was investigated by cyclic voltammetric analysis, which shows that CuS could be used for electrocatalytic applications.  相似文献   

6.
《Materials Research Bulletin》2004,39(14-15):2203-2208
A conjugated polymer/ZnS complex was successfully synthesized and characterized by the methods of FTIR, UV–vis, ESR and TEM. The result showed that the conjugated polymer/ZnS complex could extend the absorption band to the visible region (190–700 nm), whereas pure ZnS could be activated under ultraviolet light (<380 nm) irradiation only. Photocatalytic experiment showed that the conjugated polymer/ZnS complex had extremely high photocatalytic activity for degradation of dyes. The conjugated polymer played an important role in the photocatalytic degradation of dyes.  相似文献   

7.

In this study, we used co-precipitation assisted solvothermal route to produce self-assembled covalent organic frameworks (COFs) quantum dots modified with biochar structures. In addition, photocatalytic degradation of organic dyes such as methyl red, methyl orange and methyl blue were measured without the need to artificial UV visible light in vitro condition, and degradation rate was estimated at alternate times. The biochar as precursor agent with hydrothermal method as an eco-friendly synthesis route used to provides COFs quantum dot nanostructures with appropriate diameter and size about 3.68 nm. This research presents a new and novel nanocomposite structures with the contribution of biochar as biological material for decolorization of methylene red, orange and blue were calculated using UV–vis spectroscopy. Novel covalent organic frameworks quantum dot membranes with high purity were synthesized and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), Atomic force microscopy (AFM), Fourier transformed infrared spectrum (FT-IR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and Brunauer–Emmett–Teller (BET) surface area analysis. Results clearly indicate which self-assembled COFs quantum dots as supramolecular cages modified with biochar synthesized with the cost-effective method act as a high performance photocatalyst for degradation of methylene red, orange and blue organic dyes.

  相似文献   

8.
Environmental pollution has become one of the greatest problems worldwide, and photocatalysts have attracted a great deal of attention as one solution to this problem. In the present study, we report a novel environmentally friendly property of graphene quantum dots (GQDs) as efficient nano-materials for the degradation of organic pollutant dyes based on the photocatalytic behavior of GQDs under visible-light irradiation. GQD samples were derived from citric acid by a pyrolysis procedure. The synthesized GQDs were characterized by various techniques including transmission electron microscopy, UV–Vis absorption, Raman spectroscopy, fluorescence spectroscopy, and zeta potential measurements. The photocatalytic degradation of Celestine Blue (CB) was studied using GQDs under visible light irradiation. The effect of pH value, contacting time, dosage of GQDs, and initial dye concentration on the degradation kinetics of CB was systematically investigated. MS analyses were conducted to determine the degradation products evolving during the photocatalytic degradation. The possible mechanisms of degradation of CB based on GQDs under visible light are discussed as well.  相似文献   

9.
The silanol-modified polystyrene microspheres were prepared through dispersion polymerization. Then copper sulfide particles were grown on silanol-modified polystyrene through sonochemical deposition in an aqueous bath containing copper acetate and sulfide, released through the hydrolysis of thioacetamide. The resulting particles were continuous and uniform as characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared, thermogravimetric analysis and UV–vis absorption spectroscopy were used to characterize the structure and properties of core–shell particles. The results showed the coating thickness of CuS shell can be controlled by the amount of silanol and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS.  相似文献   

10.
Pure and Nd3+-doped tin oxide (SnO2) nanoparticles have been prepared by the sol–gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive spectroscopy and UV–visible spectroscopy. The XRD patterns of all the samples are identified as tetragonal rutile-type SnO2 phase which is further confirmed by TEM analysis. Neodymium doping introduces band gap narrowing in the prepared samples and enhances their absorption towards the visible-light region. The photocatalytic activity of all the samples was evaluated by monitoring the degradation of methylene blue solution under day light illumination and it was found that the photocatalytic activity significantly increases for the samples calcined at 600 than 400°C, which is due to the effective charge separation of photogenerated electron–hole pairs. The efficiency of photocatalysts was found to be related to neodymium doping percentage and calcination temperature.  相似文献   

11.
The remarkable size-tunable properties of nanoparticles (NPs) make them a hot research topic with applications in a wide range of fields. Hence, copper (Cu) colloidal NPs were prepared using laser ablation (Nd:YAG, 1064 nm, 7 ns, 10 Hz, 6000 pulses) of a copper metal plate at different laser fluences (LFs) in the range of 1–2.5 J cm?2 in ethylene glycol (EG), at room temperature. Analysis of NPs was carried using different independent techniques such as ultraviolet–visible (UV–vis) spectroscopy; transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. TEM analysis showed that the NPs were spherical with a bimodal distribution and an average particle size of 5 and 16 nm influence of 1.2 J cms?2, and 9 and 22 nm at 2 J cm?2. The UV–vis spectra of colloidal NPs revealed the maximum absorbance at around 584 nm, indicating the formation of Cu NPs, which supported using FTIR spectra. Furthermore, the absorption spectra confirmed the metallic nature of Cu NPs. FTIR spectroscopy was utilized to verify information about the NPs surface state and chemical bonds constructed in the atom groups apparent on their surface.  相似文献   

12.
Ag deposited ZnO nanoparticles (NPs) have been synthesized by simple sol–gel method for visible light active photocatalytic application. X-ray diffraction (XRD), TEM, UV–DRS and PL studies have been used to characterize the photocatalyst. The results show that Ag/ZnO NPs are wurtzite phase (WZ) of ZnO with Ag NPs in the surface region forming a hetero-interface of Ag–WZ (ZnO). Visible light activity of the material has been studied using photocatalytic degradation kinetics of methylene blue as a probe pollutant. Ag/ZnO NPs exhibit five times higher visible-light driven photocatalytic activity than pristine ZnO and four times than the reference Degussa P-25, under identical conditions. The high visible activity of Ag/ZnO may be attributed to the surface plasmon effect complemented sensitization in the presence of metallic Ag and effective charge separation through Ag–WZ hetero-interfaces.  相似文献   

13.
Copper-doped TiO2 nanoparticles were synthesised using an ultrasonic-assisted sol–gel method with various doping concentrations from 0 to 2.5 at.%. The samples were characterised by X-ray diffraction, UV–vis diffuse reflectance spectroscopy (UV–vis), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area determination, and zeta potential. The presence of copper in TiO2 crystal structure was revealed by UV–vis spectra, and the TEM analysis showed that particles are mainly spherical around the size range of 15–20 nm. In addition, doping copper into TiO2 lattice caused a decrease in the surface area due to the aggregation of nanoparticles and a shift of isoelectric point towards lower pH when the dopant concentration increased. The photocatalytic reactivity of these materials was evaluated by the degradation of methylene blue and methyl orange under the UV light. The effect of the initial solution pH on the adsorption capacity and the photocatalytic behaviour of the Cu-doped TiO2 in the decolourisation of these dyes were also studied.  相似文献   

14.
In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.  相似文献   

15.
The present work reports study on antimicrobial activity of pure and doped ZnO nanocomposites. Polyvinyl pyrrolidone capped Mn- and Fe-doped ZnO nanocomposites were synthesised using simple chemical co-precipitation technique. The synthesised materials were characterised using transmission electron microscope (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray fluorescence (EDXRF), Fourier transform infrared (FTIR) spectroscopy and ultraviolet (UV) visible spectroscopy. The XRD and TEM studies reveal that the synthesised ZnO nanocrystals have a hexagonal wurtzite structure with average crystalline size ~7–14 nm. EDXRF and FTIR study confirmed the doping and the incorporation of impurity in ZnO nanostructure. The antimicrobial activities of nanoparticles (NPs) were studied against fungi, gram-positive and gram-negative bacteria using the standard disc diffusion method. The photocatalytic activities of prepared NPs were evaluated by degradation of methylene blue dye in aqueous solution under UV light irradiation. Experimental results demonstrated that ZnO NPs doped with 10% of Mn and Fe ions showed maximum antimicrobial and photodegradation efficiency in contrast with that of the 1% loading. The enhancement in antimicrobial effect and photocatalytic degradation is attributed to the generation of reactive oxygen species due to the synergistic effects of Mn and Fe loading.  相似文献   

16.
A facile large scale synthesis of high surface area anatase TiO2 nano material has been carried out by using the solution combustion synthesis with very widely available urea as fuel. The as-obtained puffy powder of anatase TiO2 was characterised by X-ray diffraction (XRD), Brunauer–Emmett–Teller surface area analysis, ultraviolet–visible (UV–vis) spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques in order to analyse the structural, optical and surface properties of the synthesised material. Diffuse UV–vis spectroscopic data show a red shift in absorption spectra which may be attributed to the possible energy levels added in between the band edges of TiO2 due to the C and N doping as confirmed by XPS. Photocatalytic activity of the catalyst was assessed by the photocatalytic degradation of methyl orange under visible light irradiation. The effect of an electron acceptor in order to maximise the electron trapping for further inhibiting exciton recombination and thereby enhancing the oxidation of dyes has also been studied by using peroxomono sulphate(PMS) as the electron acceptor.  相似文献   

17.
In this paper, a ball milled Cu2O-ZnO nano-photocatalyst with good photocatalytic performance in visible light range was prepared. Effect of ZnO presence and ball milling of Cu2O on the structure, microstructure, optical properties and photocatalytic performance were studied. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), high resolution transmission electron microscopy (HRTEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) analysis and UV–Vis spectrophotometer were used as characterization techniques. FESEM results indicated that ball milling of Cu2O changed the morphology of Cu2O-ZnO composite. The uniform formation of ZnO particles with average size of 30 nm over the Cu2O surface was observed. The formation of p-n heterostructure with good contact between Cu2O and ZnO nanoparticles was found by HRTEM image. Ball milling of Cu2O promotes visible light absorption and reduction band gap to 1.9 eV in Cu2O-ZnO photocatalyst. Intensity of PL spectra for the ball milled Cu2O-ZnO photocatalyst was obviously lower. Ball milled Cu2O-ZnO photocatalyst shows the highest photocatalytic activity and degradation efficiency of 98% was obtained for 2 mg/L methylene blue (MB) solution after 240 min. The kinetics of the photodegradation was followed the Langmuir-Hinshelwood (L-H) model and degradation rates were decreased by increase of MB concentration. In the case of ball milled Cu2O and presence of ZnO, the MB degradation kinetics was two times faster.  相似文献   

18.
In this study, CdS combined graphene/TiO2 (CdS-graphene/TiO2) composites were prepared by a sol–gel method to improve on the photocatalytic performance of TiO2. These composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM). The photocatalytic activities were examined by the degradation of methylene blue (MB) under visible light irradiation. The photodegradation rate of MB under visible light irradiation reached 90·1% during 150 min. The kinetics of MB degradation were plotted alongside the values calculated from the Langmuir–Hinshelwood equation. 0·1 CGT sample showed the best photocatalytic activity, which was attributed to a cooperative reaction between the increase of photo-absorption effect by graphene and photocatalytic effect by CdS.  相似文献   

19.
The interaction of covellite hexagonal phase of copper sulphide nanoparticles (CuS NPs) with bovine serum albumin (BSA) was examined systematically by using fluorescence, UV–visible, circular dichroism (CD), Fourier transform infrared (FTIR), dynamic light scattering (DLS) and molecular modelling techniques. Electrochemical method was studied to further confirm the interaction of BSA with CuS NPs. The results of fluorescence studies demonstrated that fluorescence of BSA was quenched by CuS NPs via a static quenching mechanism. The negative values of thermodynamic parameters (ΔG, ΔH and ΔS) indicated that the binding process is spontaneous, exothermic and van der Waals force or hydrogen bonding plays major roles in the interaction of CuS NPs with BSA. The interaction of CuS NPs with Trp residue was established by synchronous studies, and competitive binding studies revealed that Trp-212 of subdomain IIA was involved in the interaction with these nanoparticles. Further, the efficiency of energy transferred and the distance between fluorophore (BSA) and acceptor (CuS NPs) were calculated using Forster’s resonance energy transfer theory. The results of UV–visible, CD, FTIR and DLS revealed that the CuS NPs interact with BSA by inducing the conformational changes in secondary structure and reducing the α-helix content of BSA. Molecular modelling studies suggested that CuS NPs bind to site I of sub domain IIA of BSA. The results of spectroscopic and molecular docking studies were complimented by the electrochemical techniques.  相似文献   

20.
We report photocatalytic degradation studies on Navy Blue HE2R (NB) dye on significant details as a representative from the class of azo dyes using functional nanosystems specifically designed to allow a strong photocatalytic activity. A modified sol-gel route was employed to synthesize Au and gamma-Fe2O3 modified TiO2 nanoparticles (NPs) at low temperature. The attachment strategy is better because it allows clear surface of TiO2 to remain open for photo-catalysis. X-ray diffraction, Raman and UV-VIS spectroscopy studies showed the presence of gold and iron oxide phases along-with the anatase TiO2 phase. TEM studies showed TiO2 nanocomposite particles of size approximately 10-12 nm. A detailed investigation on heterogeneous photocatalytic performance for Navy Blue HE2R dye was done using the as-synthesized catalysts Au:TiO2 and gamma-Fe2O3:TiO2 in aqueous suspension under 8 W low-pressure mercury vapour lamp irradiation. Also, the photocatalytic degradation of Amranth and Orange G azo dyes were studied. The surface modified TiO2 NPs showed significantly improved photocatalytic activity as compared to pure TiO2. Exposure of the dye to the UV light in the presence of pure and gold NPs attached TiO2 catalysts caused dye degradation of about approximately 20% and approximately 80%, respectively, in the first couple of hours. In the presence of gamma-Fe2O3 NPs attached TiO2, a remarkable approximately 95% degradation of the azo dye was observed only in the first 15 min of UV exposure. The process parameters for the optimum catalytic activity are established which lead to a complete decoloration and substantial dye degradation, supported by the values of the Chemical Oxygen Demand (COD) approximately 93% and Total Organic Carbon (TOC) approximately 65% of the treated dye solution after 5 hours on the employment of the UV/Au:TiO2/H2O2 photocatalytic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号