首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
提出半固态坯料先在液相线以上某温度适当等温加热,然后再降低温度至两相区继续等温保温的两步法部分重熔新工艺.采用该工艺对低过热度浇注半固态2024合金坯料进行部分重熔试验,利用光学显微镜和金相图像分析系统,研究了坯料组织演变规律,并与两相区等温部分重熔工艺进行了比较.结果表明,采用两步法部分重熔工艺.由于坯料升温速度加快和熔化过热温度提高,抑制了晶间共晶相的溶解扩散,晶间液相形成速度明显加快,对晶粒合并长大具有一定的抑制作用,并加速晶粒球化,坯料部分重熔后,晶粒更加细小和圆整.  相似文献   

2.
等温温度对半固态2024合金部分重熔组织的影响   总被引:2,自引:0,他引:2  
分别在固液两相区620和630℃以及液相线以上640和650℃对半固态2024合金坯料进行等温加热,利用光学显微镜和金相图像分析系统,研究等温温度对半固态坯料部分重熔组织的影响。结果表明:坯料等温温度越高,液相形成速度越快,重熔后晶粒越细小。在液相线以上温度等温加热比在固液两相区温度等温加热时,坯料重熔后晶粒明显细小,但球化程度略低。组织演变机理分析表明,提高等温温度,液相形成速度加快导致晶粒合并受到一定的抑制是晶粒细化的主要原因,而保温时间的缩短则是晶粒球化程度降低的原因。  相似文献   

3.
分别在固液两相区580 ℃和600 ℃、620 ℃对晶粒细化AZ91D镁合金坯料进行等温部分重熔,利用光学显微镜,研究了加热温度对坯料部分重熔组织的影响.结果表明,加热温度越高,坯料重熔速度越快,重熔后晶粒越细小.组织演变机理分析表明,提高加热温度,加快液相形成速度对晶粒合并长大具有一定的抑制作用,有利于细化部分重熔晶粒组织.  相似文献   

4.
半固态金属坯料部分重熔是半固态金属触变成形工艺的重要技术环节,为了使坯料获得既细小又圆整的晶粒组织,对近液相线铸造ZK60镁合金半固态坯料进行部分重熔,通过改变重熔温度和保温时间来研究其微观组织的演化规律。结果表明:适当控制加热温度和保温时间,坯料部分重熔时可获良好的触变结构。石墨模浇注时,在600~605℃、保温10~15 min时可获得较理想的触变结构,平均晶粒尺寸达30.5μm,圆度达1.5;水冷铜模浇注时,可得出相同的结论,其晶粒平均直径为31.8μm,圆度达1.6。且坯料近液相线铸造时的冷却速率对部分重熔的进程也产生影响,适当降低铸造冷却速率,即采用石墨模能提高二次重熔组织的均匀性和稳定性。  相似文献   

5.
研究了近液相线铸造A380铝合金在563、573及583℃保温5~60min的二次加热工艺条件下的组织演变。结果表明,随着保温温度的升高和保温时间的延长,晶粒平均等积圆直径增加,晶粒圆整度降低,温度越高,变化的趋势越快。半固态坯料加热温度为583℃,保温时间为20min时,能够获得较好的二次加热组织。此时,晶粒平均等积圆直径为49.74μm,晶粒平均圆整度为1.75。  相似文献   

6.
6061铝合金半固态坯料二次加热工艺及组织演变   总被引:3,自引:3,他引:0  
针对近液相线半连续铸造技术制备的6061铝合金半固态坯料,在不同加热温度及保温时间下进行二次加热,采用光学显微镜及图像分析仪考察试样的微观形貌及尺寸特征,结合差热分析的方法研究加热过程中的液相形成、组织演变及晶粒长大过程。结果表明,二次加热温度及保温时间共同影响着微观组织演变过程,随着加热温度升高及保温时间延长,晶粒逐渐球化并长大。加热温度越高,组织演变速度越快;保温时间越长,晶粒球化并长大越明显。有效地控制二次加热温度及保温时间,能够获得均匀、圆整且相对细小的半固态组织。  相似文献   

7.
对低压脉冲磁场技术制备的2A12铝合金半固态坯料进行部分重熔,利用光学显微镜和图像分析仪等,对半固态坯料部分重熔微观组织的演变进行了研究.结果表明,随着加热温度的提高或保温时间的延长,坯料的平均晶粒尺寸增大,重熔液相增加,晶粒的圆整度提高.最佳的部分重熔工艺参数如下:加热温度为620℃左右,保温时间为20~40 min.形成初生α-Al晶粒为均匀的近球形颗粒,平均晶粒尺寸为116~120 μm,液相率在40%左右,适合于半固态触变成形.组织演化机制分析表明,部分重熔的初期阶段,重熔液相较少,晶粒主要通过凝并快速长大;随加热温度的升高和保温时间的延长,重熔液相增加,晶粒主要通过原子扩散慢速长大并发生球化.  相似文献   

8.
采用光学显微镜及图像分析软件,研究了A1Mg0.9Si0.6合金低过热度半连续铸造坯料在不同加热温度及保温时间下重熔的微观形貌及尺寸特征,结合差热分析的方法研究加热过程中组织演变及晶粒长大过程.结果表明:重熔加热温度及保温时间共同影响着合金重熔组织的演变进程,随着加热温度升高及保温时间延长,晶粒逐渐球化并长大;加热温度越高,组织演变速度越快;保温时间越长,晶粒球化并长大越明显;有效控制AlMg0.9Si0.6合金重熔加热温度及保温时间,能够获得均匀、圆整且相对细小的半固态浆料组织.  相似文献   

9.
AZ91D镁合金近液相线铸造半固态坯料的部分重熔   总被引:20,自引:0,他引:20  
乐启炽  张新建  崔建忠  路贵民  欧鹏 《金属学报》2002,38(12):1266-1272
对近液相线铸造AZ91D镁合金半固态坯料进行部分重熔,通过改变部分重熔时的加热温度和保温时间来研究其微观组织的演化规律,结果表明,适当控制加热温度和时间,坯料部分重熔时可获良好的触变结构,且坯料铸造时的高冷却速率因促进了坯料组织细化和蔷薇化而在部分重熔时加快固相颗粒球化进程并使球化效果改善、坯料在近液相线温度静置30min用水冷铁模浇注时,在575-580℃,保温15-30min可获得较理想的重熔结构,而用石墨模浇注时,则为580℃保温15-30min,研究还表明,重熔组织演化过程分球化预备,固相颗粒细化和球化及固相颗粒大长3个阶段,该进程是溶质和空位扩散以及相界面张车共同作用的结果,其中,前者在初期,后者在中后期起支配作用。  相似文献   

10.
利用低过热度浇注技术制备了半固态ZL101铝合金坯料,研究了半固态温度区间重熔加热时半固态ZL101铝合金坯料的初生相形貌的转变过程。研究结果表明,在半固态两相区保温,半固态ZL101合金的初生相逐渐团球化,该过程随保温温度的升高而加快。半固态ZL101铝合金晶粒的圆度与保温温度和保温时间的关系不大,但晶粒的尺寸随着保温温度和保温时间的增加而增大。半固态ZL101合金试样重熔加热最佳工艺制度为583℃下保温30m in,其晶粒平均等积圆直径为80μm,晶粒平均圆度为0.83。  相似文献   

11.
A two-step reheating process was proposed and applied to perform reheating experiments on the semi-solid 2024 alloy billet. In this process, the semi-solid billet was firstly heated over liquidus temperature and then isothermally held at solid-liquid zone temperature. Microstructure evolution of the semi-solid billet during two-step reheating was studied by optical microscope and compared with that during isothermal reheating. The results show that the remelting rate of the semi-solid billet during two-step reheating is faster than that during isothermal reheating. Under the same reheating time, the grains of the semi-solid billet reheated by two-step reheating process are finer and rounder than those by isothermal reheating process. The present experimental results indicate that accelerating the formation of liquid phase during the two-step reheating process can restrain the coalescence of grains to a certain extent, and thus refine the grain size and promote the grain spheroidization.  相似文献   

12.
文章研究了Al-4Cu-Mg合金半固态重熔过程中加热温度和保温时间对微观组织形貌和α晶粒尺寸的影响,并对组织演化机制进行了探讨。实验结果表明,当加热温度较低或保温时间较短时,晶粒尺寸小且均匀性差。由于液相分数少,α晶粒之间粘连严重。随着加热温度的升高或保温时间的延长,α晶粒发生了长大和圆整化。对于Al-4Cu-Mg合金来说,合适的半固态重熔参数为:加热温度为540℃~580℃;保温时间小于10min。在半固态重熔过程中,α晶粒的合并长大和Ostwald长大是其微观组织演化的主要机制,两种晶粒长大机制在重熔过程中所起的作用受液相体积分数的影响。  相似文献   

13.
The effects of the isothermal temperature and holding time on the microstructure and element distribution have been investigated during partial remelting of the semisolid Al-4Cu-Mg alloy. The experimental results show that the optimal process parameter should be chosen at isothermal temperature of 540-580 °C with the holding time of less than 10 min. Coalescence and coarsening of α grains occur at low liquid fraction. At high liquid fraction, coarsening of α grains and melting of small grains were promoted by an increase of the isothermal temperature and the holding time. The coalescence of grains and Ostwald ripening are two main mechanisms of the microstructural evolution during partial remelting. Meanwhile, the higher the isothermal temperature and the longer the holding time, the more segregation of Cu at the grain boundary would be, which conform to the theory of element distribution affected by heating condition.  相似文献   

14.
7 A04合金半固态触变模锻的组织演化   总被引:1,自引:1,他引:0  
研究了SIMA法制备的7A04合金在半固态触变模锻工艺中的组织演化规律.结果表明:在半固态重熔加热过程中,随着加热温度的升高和保温时间的延长,晶粒逐渐球化和长大,且加热温度对重熔加热组织的影响比保温时间大;当将具有此特征的坯料进行半固态触变模锻后,其获得的触变模锻件的显微组织与半固态重熔组织密切相关.当模锻温度达到600℃以上时,模锻件的显微组织变化不大,仍是均匀的近球形的显微组织,而且模锻件各区域的合金成分基本一致.揭示了采用半固态触变模锻工艺可获得形状复杂的高质量制件.  相似文献   

15.
Microstructural evolution of semi-solid 7075 Al alloy manufactured by strain-induced melt activation (SIMA) process was investigated. The effects of different processing parameters, such as isothermal temperature and holding time on the semi-solid microstructures (the liquid volume fraction, average grain size, and degree of spheroidization of the solid particles) during partial remelting have been investigated on 7075 Al alloy that was extruded by an extrusion ratio of 20 before remelting. Experiments of remelting were carried out in the range of 560-610 °C for 10, 20, and 30 min holding time and then the specimens were quenched in cold water. Microstructure of quenched samples were observed under optical microscope and then analyzed via image analysis. The results showed that high semi-solid isothermal temperature would increase the liquid volume fraction and accelerate the spherical processing of the solid particles. Furthermore at long holding time, the globular grains coarsened slightly and the average grains size are increased. The experimental results showed that the optimum process parameters, should be chosen at isothermal temperature of 580 °C with the holding time, <30 min.  相似文献   

16.
郑宏光  刘华松 《连铸》2020,45(2):45-51
为了探讨铸坯表层粗大奥氏体晶粒的形成机制,研究了奥氏体晶粒在不同保温条件下的粗化行为。发现由于析出相的影响,高温保温时不同钢种间晶粒生长规律存在差异,且晶粒的进一步粗化在1 250 ℃以下难以有效进行。在此基础上,为了明确装炉温度对加热后奥氏体晶粒结构的影响,对模拟热装再加热过程中的晶粒结构演变进行了试验探究。结果表明,高于珠光体形成温度热装时,轧前奥氏体晶粒结构与冷却前一致;而低于此温度热装时,在奥氏体化后出现大量的新生细小晶粒。后者得到的混晶结构在继续加热至均热温度的过程中发生反常晶粒生长,导致最终组织较冷却前更为粗大。  相似文献   

17.
The microstructural evolution of the A2017 semi-solid alloy billets provided with rheocasting and extruding/extending forming by shearing-cooling-rolling(SCR) technology during reheating in semi-solid state was investigated. The microstructural differences and their generation causes for both billets were also analyzed. The results show that during reheating, the grains of rheocasting billets grow up and spheroidize gradually with the prolongation of isothermal holding time, the eutectic liquid phase at low melting point forms mainly among the grains. However, the grains of the extruding/extending forming billets grow up abnormally through grain coalescence in the initial stage of the reheating, the entrapment of large amount of liquid within grains occurs, and the grain sizes in the reheating billets are coarse and inhomogeneous. Compared with extruding/extending forming billets, rheocasting billets have smaller and uniform grains in reheating microstructure and can rapidly form liquid phase among grains. Therefore, rheocasting billets are more suitable for the semi-solid forming than the extruding/extending forming billets.  相似文献   

18.
采用光学显微镜及图像分析仪,研究了AlSi7Mg合金低过热度半连续铸造坯料在不同加热温度及保温时间下重熔的微观形貌及尺寸特征,结合差热分析的方法研究了加热过程中组织演变及晶粒长大过程。结果表明,重熔加热温度及保温时间共同影响着合金重熔组织的演变进程,随着加热温度升高及保温时间延长,晶粒逐渐球化并长大。加热温度越高,组织演变速度越快;保温时间越长,晶粒球化并长大越明显。有效控制AlSi7Mg合金重熔加热温度及保温时间,能够获得均匀、圆整且相对细小的半固态浆料组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号