首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The solid-solid mass transfer performance of an external-loop airlift reactor was measured by dissolution of benzoic acid coated on nylon-6 particles, and the hydrodynamics of the gas-liquid-solid multiphase system in the airlift reactor were investigated. The solid-liquid system was designed to simulate the micro-carrier culture of animal cells, and some typical suspensions of immobilized enzyme particles.

The solid-liquid mass transfer coefficient remained constant below a superficial air velocity of 0.04 ms-1 for the particles examined, but increased rapidly with further increase in gas velocity. Solids loading (0.3-3.5% w/w) did not affect the mass transfer coefficient in turbulent flow.

The mass transfer coefficient was correlated with energy dissipation rate in the airlift reactor. The mass transfer coefficient in stirred vessels, bubble columns, fluidized beds, and airlift reactors was compared.

Over an energy dissipation Reynolds number of 4-400, the solid-liquid mass transfer coefficient in the airlift device was comparable to that obtainable in fluidized beds. The performance of the airlift was distinctly superior to that of bubble columns and stirred tanks.  相似文献   

2.
The effects of the horizontal connection length (0.1 ± Le ± 0.5 m), the cross-sectional area ratio of downcomer-to-riser (0.11 ± Ad/Ar± 0.53), and the superficial gas velocity on gas phase holdups in the riser and downcomer were studied. The circulation liquid velocity, the mixing performance and the volumetric mass transfer coefficient in the external-loop airlift reactors were also measured. The horizontal connection length and Ad/Ar were major parameters which strongly affected the performance of external-loop airlift reactors. Useful correlations in the external-loop airlift reactors were obtained for gas holdups, the volumetric mass transfer coefficient, the circulation liquid velocity, and the mixing time.  相似文献   

3.
Effects of the aerated liquid level above the downcomer on riser superficial liquid velocity, gas flow rates, and gas holdups in individual sections were investigated in an external-loop airlift reactor. The aerated liquid level is an important operating parameter, and the valve connected to the extension tube could adjust it. As the aerated liquid level was increased up to 0.158 m, which was slightly larger than the diameter of the riser, both the liquid circulation velocity and the gas flow rate in the extension tube increased, whereas the riser gas holdup, the downcomer gas holdup, and the gas flow rate in other individual sections except the extension tube decreased. A combination of the gas-liquid separation ability and hydraulic resistance of the head region and the surface aeration could explain the impact of the aerated liquid level on the hydrodynamic characteristics. However, the effect was negligible when the aerated liquid level was higher than 0.158 m.  相似文献   

4.
The effects of the horizontal connection length (0.1≤Lc≤0.5 m), the downcomer-to-riser cross-sectional area ratio (0.11≤Ad/Ar≤0.53) and the superficial gas velocity (0.02≤UG≤0.18 ms-1) on gas holdups in the riser and downcomer, the circulation liquid velocity, the mixing time, and the overall volumetric mass transfer coefficient were determined in external-loop airlift reactors without an extension tube above the downcomer [configuration (a)]. For otherwise fixed conditions, the absence of the extension tube strongly affected the hydrodynamic and mass transfer characteristics of external-loop airlift reactors. In contrast with the external-loop airlift reactor with the extension tube [configuration (b)], a large air pocket formed in the top horizontal connection and the surface aeration took place in the external-loop airlift reactor without the extension tube [configuration (a)]. As a result, the riser circulation liquid velocity in configuration (a) was slower than that in configuration (b). The riser and downcomer gas holdups, the mixing time and the overall volumetric mass transfer coefficient in configuration (a) were larger than those in configuration (b), respectively.  相似文献   

5.
Effects of the aerated liquid level above the downcomer on riser superficial liquid velocity, gas flow rates, and gas holdups in individual sections were investigated in an external-loop airlift reactor. The aerated liquid level is an important operating parameter, and the valve connected to the extension tube could adjust it. As the aerated liquid level was increased up to 0.158 m, which was slightly larger than the diameter of the riser, both the liquid circulation velocity and the gas flow rate in the extension tube increased, whereas the riser gas holdup, the downcomer gas holdup, and the gas flow rate in other individual sections except the extension tube decreased. A combination of the gas-liquid separation ability and hydraulic resistance of the head region and the surface aeration could explain the impact of the aerated liquid level on the hydrodynamic characteristics. However, the effect was negligible when the aerated liquid level was higher than 0.158 m.  相似文献   

6.
Fermentation experiments to produce validamycins from crude substrates by Streptoniyces hygroscopi-cus were carried out in an external-loop airlift bioreactor (0.0115 m3 ) with a low ratio of height to diameter of the riser of 2.9 and a ratio of riser to downcomer diameter of 6.6. The influences of gas flow rate and liquid volume on fermentation of validamycins were investigated. Comparisons of validamycin fermentation were made among the external-loop airlift bioreactor, a mechanically stirred tank bioreactor (0.010m3 ) and shaking flasks. Under the same operation conditions including fermentation medium composition, inoculum ratio and culture temperature, the fermentation time in the external-loop airlift bioreactor (45 h) was shorter than that in the shaking flasks (100 h) and the same as that in the mechanically stirred tank bioreactor. After a total fermentation time of 45 h under optimized operation conditions, average validamycin concentration obtained in the external-loop airlift bioreactor was  相似文献   

7.
在高径比为22的三相内环流反应器中,在常温常压下以空气-水-石英砂为物系,研究了在不同粒径下上升区固含率、下降区固含率和上升区循环液速随表观气速的变化规律和不同粒径下轴向固含率的分布情况,以及在固体体积分数不同的条件下,平均气含率和上升区气含率随表观气速的变化情况。结果表明:当粒径(ds)≤0.3 mm时,上升区固含率随表观气速的增加呈平缓变化趋势,下降区固含率随表观气速的增加而增加;当0.3 mm相似文献   

8.
为进行液浸聚光光伏系统中液浸液体即二甲基硅油在光热条件下的老化实验研究,设计制作了气升式外环流光催化反应器。采用Fluent软件欧拉多相流模型和RNG k-ε湍流模型对反应器进行了三维全尺寸数值模拟。分析了结构参数、操作参数和硅油物性参数对反应器中气液两相流动的影响,得到反应器内循环液速和气含率等参数的分布。模拟结果与实验结果有较好的一致性。模拟结果表明:硅油黏度越小,循环液速越大,气含率越小;反应器适宜操作气速不应大于0.02 m/s;反应器最适宜高径比和环隙面积比分别为47.6和0.31~0.41。  相似文献   

9.
Effective shear rate is one of the indispensable parameters for the design of aerobic fermentors using a viscous non-Newtonian system. The estimation of effective shear rate in airlift loop bioreactors has been investigated with liquid circulation velocity. An empirical correlation of effective shear rate in airlift loop reactors is proposed.

γ= 3.26-3.51 ; 102UG + 1.48 104U2G

It is found that the effective shear rate is lower in airlift reactors than in bubble columns. This equation can be used for the cultivation of cells sensitive to shear stress.  相似文献   

10.
气升式外环流反应器流体力学参数的轴径向分布   总被引:5,自引:5,他引:0       下载免费PDF全文
在气升式外环流反应器(Φ 0.09 m×1.8 m)内,利用压差法和双探针电导探头技术考察了不同表观气速下空气-水两相体系中气含率及气泡参数随轴径向位置的变化规律,测得了平均及局部气含率、气泡尺寸及分布、气泡上升速度、气泡频率以及气液相界面积,并从气液流场特征及气泡间相互作用等方面对实验结果作出分析。基于实验数据拟合出局部气含率随表观气速和轴径向位置的关联式。  相似文献   

11.
三相环流反应器流体力学行为   总被引:4,自引:3,他引:4       下载免费PDF全文
气升式三相环流反应器综合了鼓泡塔和机械搅拌釜的优良性能,具有结构简单、无机械传动部件、易密封、造价低、容易实现工业放大等优点,在石油、化工、电化学和生物化工等领域得到了广泛应用.随着能源形势的日趋紧张,环流反应器在液相法合成甲醇、浆态床一步法合成二甲醚、煤液化等过程中的应用得到许多研究人员的重视,并取得了重要的研究进展.由于目前对其内部流动行为尚缺乏系统的认识,进行工业设计和操作过程中仍显理论指导不足  相似文献   

12.
Effects of the continuous phase velocity (0.01-0.08 m/s(, the dispersed phase velocity (0.0-0.04 m/s) and particle size (1.0-3.0 mm) on the individual phase holdups and the mass transfer coefficient have been determined in two (liquid-liquid) and three (liquid-liquid-solid) phase fluidized beds.

In the beds, the dispersed phase holdup increased with dispersed phase velocity but it decreased with continuous phase velocity. Whereas the continuous phase holdup decreased with dispersed phase velocity but it increased with continuous phase velocity. The bed porosity increased with both the dispersed and continuous phase velocities in the beds of 1.7 and 3.0 mm particles. In addition, the continuous phase holdup decreased with the presence of solid particles in the bed, however, the dispersed phase holdup was not affected by the presence of the particles.

The overall mass transfer coefficients in the continuous and dispersed phases increased with increasing fluid velocities but it decreased with the bed height.

The continuous phase holdup and mass transfer coefficient data have been correlated with the operating variables and the dimensionless groups.  相似文献   

13.
高长径比三相内环流反应器中相含率的分布研究   总被引:1,自引:0,他引:1  
王宇  刘永民  龙帅 《化工科技》2013,21(1):20-23
在长径比为22的三相内环流反应器中,常温常压下,以空气-水-石英砂为物系,根据无因次准数建立了气含率、固含率的预测模型,考察了在不同粒径下上升区气含率、下降区气含率和上升区固含率、下降区固含率随表观气速的变化规律和不同固体体积分数下轴向固含率的分布情况。结果表明:不同粒径下上升区和下降区气含率均随表观气速的增大而增大;当粒径(ds)≤0.3mm时,上升区固含率随表观气速的增加呈平缓趋势,下降区固含率随表观气速的增加而增加,当0.3mm〈d。≤1.2mm时,上升区固含率随表观气速的增加而呈先下降后增加的趋势,下降区固含率随表观气速的增加而下降;不同固体体积分数下的固体颗粒的固含率随着轴向高度的增大而变化平缓,能够均匀的分布在反应器中;气含率和固含率的计算值和实验值吻合较好,其平均相对误差分别为6.32%、4.56%。  相似文献   

14.
X-ray tomography is used to characterise the liquid distribution in a 0.6 meter diameter and 2 meter height column filled with gas-liquid absorption polypropylene packing elements (Cascade Mini-Ring 1A, Glitsch Benelux). The liquid holdup distribution is determined for Uquid flowrates ranging from 1000 l/h to 6000 l/h, that correspond to superficial velocities ranging from I0-3 to 6 10-3 m/s, in several cross sections situated at different heights in the packed column.

A characteristic length, corresponding to the smallest scale beyond which the packing properties may be supposed statistically homogenous and isotropic, is determined by means of the autocorrelation function method applied to the images of the solid distribution.

Both local and global liquid holdup measurements are satisfactorily modelled by means of a partial wetting model based on a probabilistic approach.  相似文献   

15.
在高长径比(H/D=22.2)内环流反应器中,常温常压下,以空气-水-石英砂为物系,研究了表观气速和固体装载量对平均气含率、下降区气含率、上升区固含率、下降区固含率的影响,以及上升区气含率、固含率随轴向高度的分布规律.结果表明:平均气含率、下降区气含率随着表观气速的增加而增加,随ω(固体)增大而下降,ω(固体)≤2.6...  相似文献   

16.
A new developed external loop airlift slurry reactor, which was integrated with gas–liquid–solid three-phase mixing, mass transfer, and liquid–solid separation simultaneously, was deemed to be a promising slurry reactor due to its prominent advantages such as achieving continuous separation of clear liquid from slurry and cyclic utilization of solid particles without any extra energy, energy-saving, and intrinsic safety design. The principal operating parameters, including gas separator volume, handling capacity, and superficial gas velocity, are systematically investigated here to promote the capabilities of mixing, mass transfer, and yield in the pilot external loop airlift slurry reactor. The influences of top clearance and throughput of the clear liquid on flow regime and gas holdup in the riser, liquid circulating velocity, and volumetric mass transfer coefficient with a typical high solid holdup and free of particles are examined experimentally. It was found that increasing the gas separator volume could promote the liquid circulating velocity by about 14.0% at most. Increasing the handling capacity of the clear liquid from 0.9 m~3·h~(-1) to 3.0 m~3·h~(-1) not only could increase the output without any adverse consequences, but also could enhance the liquid circulating velocity as much as 97.3%. Typical operating conditions investigated here can provide some necessary data and guidelines for this new external loop airlift slurry reactor to upgrade its performances.  相似文献   

17.
Computational fluid dynamics (CFD) was used to investigate the hydrodynamic parameters of two internal airlift bioreactors with different configurations. Both had a riser diameter of 0.1 m. The model was used to predict the effect of the reactor geometry on the reactor hydrodynamics. Water was utilized as the continuous phase and air in the form of bubbles was applied as the dispersed phase. A two-phase flow model provided by the bubbly flow application mode was employed in this project. In the liquid phase, the turbulence can be described using the k-? model. Simulated gas holdup and liquid circulation velocity results were compared with experimental data. The predictions of the simulation are in good agreement with the experimental data.  相似文献   

18.
Effects of secondary air injection on the hydrodynamics such as solid holdup and gas-solid flow behavior were investigated in a circulating fluidized bed. The gas velocity in the riser, the ratio of secondary air velocity to that of primary air, and the solid circulating rate were chosen as operating variables. Fluid cracking catalyst(FCC) with a density of 1840 kg/m3 and a mean diameter of 74 um was employed as the solid phase. The secondary air was fed to the riser radially or tangentially at the wall of the column. Pressure drop fluctuations in the riser were measured and analyzed by adopting the stochastic method to characterize the effects of secondary air injection on the gas-solid flow behavior in the bed.

It has been found that the injection of secondary air into the riser can increase the solid holdup in the riser considerably, and that the tangential injection of secondary air is more effective for the increasing the solid holdup than the radial injection. However, the gas-solid flow behavior has been found to become less persistent with the injection of secondary air; the resultant flow behavior is more complex when the air is injected tangentially than radially. The solid holdups in the primary as well as secondary zones of the riser have been well correlated in terms of not only operating variables but also fractal dimension of the pressure fluctuations.  相似文献   

19.
In an internal loop airlift reactor of 55L working volume,the gas-liquid volumetric oxygenmass transfer coefficient k_Lα,gas holdup ε_G and liquid circulation time t_c were measured with the sol-ution of carboxymethyl cellulose(CMC)to simulate the performance of a reactor with highly viscousbroth.Electric conductivity and oxygen probes were used to measure the local gas holdup,liquidcirculation time and oxygen mass transfer coefficient in the individual sections of the reactor(riser,downcomer and the gas-liquid separating section at the top of the reactor)and the total reactor,respectively.The values of k_Lα for the riser,downcomer and separation sections of the reactor were alsoestimated and compared with that for the total reactor.The results show that,both k_Lα and ε_G in-crease but t_c decreases with increasing gas velocity.Correlations and comparisons with works reportedin the literature are also presented.Data show that the methods developed for k_Lα measurements inthe individual section and  相似文献   

20.
Two geometric configurations of gas-liquid separators were used in split-channel airlift reactors (0.1 m3 liquid volume; riser-to-downcomer cross-sectional area = 1.45; aspect ratio = 3.6) to test the effect of geometry on hydrodynamic performance and oxygen transfer behaviour. One of the configurations consisted of the basic internal-loop airlift head region without added features; the other had a 45° -inclined prism attached to the upper edge of the splitting baffle. For otherwise fixed conditions, the design of gas-liquid separators affected the induced liquid circulation velocity, the depth of penetration of the bubbles in the downcomer, the gas holdup in the downcomer and the mixing time. The overall volumetric gas-liquid oxygen transfer coefficient was not affected. The gas holdup in the riser was only marginally affected by the design of the separator; however, the relationship between the riser and the downcomer holdups was sensitive to separator configuration. Incorporation of the prism in the basic airlift configuration enhanced gas-liquid separation so much so that up to 30% reduction in the downcomer gas holdup could be obtained relative to the unmodified geometry. The impact of the separator designs on hydrodynamic behaviour could be explained as emanating from a combination of the gas-liquid separating ability of the design and its hydraulic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号