共查询到20条相似文献,搜索用时 15 毫秒
1.
Fuzzy production rules (FPRs) have been used for years to capture and represent fuzzy, vague, imprecise and uncertain domain knowledge in many fuzzy systems. There have been a lot of researches on how to generate or obtain FPRs. There exist two methods to obtain FPRs. One is by painstakingly, repeatedly and time-consuming interviewing domain experts to extract the domain knowledge. The other is by using some machine learning techniques to generate and extract FPRs from some training samples. These extracted rules, however, are found to be nonoptimal and sometimes redundant. Furthermore, these generated rules suffer from the problem of low accuracy of classifying or recognizing unseen examples. The reasons for having these problems are 1) the FPRs generated are not powerful enough to represent the domain knowledge, 2) the techniques used to generate FPRs are pre-matured, ad-hoc or may not be suitable for the problem, and 3) further refinement of the extracted rules has not been done. In this paper we look into the solutions of the above problems by 1) enhancing the representation power of FPRs by including local and global weights, 2) developing a fuzzy neural network (FNN) with enhanced learning algorithm, and 3) using this FNN to refine the local and global weights of FPRs. By experimenting our method with some existing benchmark examples, the proposed method is found to have high accuracy in classifying unseen samples without increasing the number of the FPRs extracted and the time required to consult with domain experts is greatly reduced. 相似文献
2.
In the past, when there were few vehicles on the roads, the time-of-day (TOD) traffic signal worked very well. The TOD signal operates on a preset signal-cycling scheme independent of traffic conditions. It cycles on the basis of the number of average passenger cars to the memory device of an electric signal unit. Today, with the increasing traffic and congested roads, the conventional traffic light creates start-up delay time and end-lag time. A 30 to 45% efficiency in traffic handling is lost, as well as added fuel costs, since it is not optimized for today's traffic condition. To solve this problem, an electrosensitive traffic light using neural fuzzy logic is investigated. This scheme uses an electrosensitive traffic light control, which changes signal based on the passing vehicle's weight, length, and passing area. Through computer simulation, this method has been proven to be much more efficient than fixed time interval signal since the average waiting time, average vehicle speed, and fuel consumption will be improved 相似文献
3.
A fast target maneuver detecting and highly accurate tracking technique using a neural fuzzy network based on Kalman filter is proposed in this paper. In the automatic target tracking system, there exists an important and difficult problem: how to detect the target maneuvers and fast response to avoid miss-tracking? The traditional maneuver detection algorithms, such as variable dimension filter (VDF) and input estimation (IE) etc., are computation intensive and difficult to implement in real time. To solve this problem, neural network algorithms have been issued recently. However, the normal neural networks such as backpropagation networks usually produce the extra problems of low convergence speed and/or large network size. Furthermore, the way to decide the network structure is heuristic. To overcome these defects and to make use of neural learning ability, a developed standard Kalman filter with a self-constructing neural fuzzy inference network (KF-SONFIN) algorithm for target tracking is presented in this paper. By generating possible target trajectories including maneuver information to train the SONFIN, the trained SONFIN can detect when the maneuver occurred, the magnitude of maneuver values and when the maneuver disappeared. Without having to change the structure of Kalman filter nor modeling the maneuvering target, this new algorithm, SONFIN, can always find itself an economic network size with a fast learning process. Simulation results show that the KF-SONFIN is superior to the traditional IE and VDF methods in estimation accuracy. 相似文献
4.
The integration of certainty factors (CFs) into the neural computing framework has resulted in a special artificial neural network known as the CFNet. This paper presents the cont-CFNet, which is devoted to classification domains where instances are described by continuous attributes. A new mathematical analysis on learning behavior, specifically linear versus nonlinear learning, is provided that can serve to explain how the cont-CFNet discovers patterns and estimates output probabilities. Its advantages in performance and speed have been demonstrated in empirical studies. 相似文献
5.
A Multi-Layer Perceptron Artificial Neural Network is employed to enable the mass that is applied to a weighing platform to be rapidly and accurately estimated before the platform has settled to the steady state. This is achieved through training the network on a set of waveforms resulting from applied masses over the operating range of the weighing platform. Results are given for both simulated and experimental data that confirm the success of the method. 相似文献
6.
Automated segmentation of retinal vessels plays a pivotal role in early diagnosis of ophthalmic disorders. In this paper, a blood vessel segmentation algorithm using an enhanced fuzzy min-max neural network supervised classifier is proposed. The input to the network is an optimal 11-D feature vector which consists of spatial as well as frequency domain features extracted from each pixel of a fundus image. The essence of the method is its hyperbox classifier which performs online learning and gives binary output without any need of post-processing. The method is tested on publicly available databases DRIVE and STARE. The results are compared with the existing methods in the literature. The proposed method exhibits efficient performance and can be implemented in computer aided screening and diagnosis of retinal diseases. The method attains an average accuracy, sensitivity and specificity of 95.73%, 74.75% and 97.81% on DRIVE database and 95.51%, 74.65% and 97.11% on STARE database, respectively. 相似文献
7.
It is known that one of the most spread forecasting methods is the time series analysis. A weakness of traditional crisp time
series forecasting methods is that they process only measurement based numerical information and cannot deal with the perception-based
historical data represented by linguistic values. Application of a new class of time series, a fuzzy time series whose values
are linguistic values, can overcome the mentioned weakness of traditional forecasting methods. In this paper we propose a
fuzzy recurrent neural network (FRNN) based time series forecasting method for solving forecasting problems in which the data
can be presented as perceptions and described by fuzzy numbers. The FRNN allows effectively handle fuzzy time series to apply
human expertise throughout the forecasting procedure and demonstrates more adequate forecasting results. Recurrent links in
FRNN also allow for simplification of the overall network structure (size) and forecasting procedure. Genetic algorithm-based
procedure is used for training the FRNN. The effectiveness of the proposed fuzzy time series forecasting method is tested
on the benchmark examples. 相似文献
9.
提出了一种改进的模糊CMAC神经网络(IFCMAC),该神经网络是在经典的FCMAC神经网络的模糊后相连层和输出层之间引入了输入矢量的线性加权和来补偿逼近的误差,所以它的逼近精度得到提高,解决了CMAC系列神经网络逼近精度不高的弱点,在颅脑磁共振图像分割仿真实验中,把当前像素点的子图像的纹理特征和该像素点的灰度值作为该像素的特征向量,将该特征向量作为IFCMAC神经网络的输入,实验结果表明其具有较高的分割准确性。 相似文献
10.
An adaptive fuzzy inference neural network (AFINN) is proposed in this paper. It has self-construction ability, parameter estimation ability and rule extraction ability. The structure of AFINN is formed by the following four phases: (1) initial rule creation, (2) selection of important input elements, (3) identification of the network structure and (4) parameter estimation using LMS (least-mean square) algorithm. When the number of input dimension is large, the conventional fuzzy systems often cannot handle the task correctly because the degree of each rule becomes too small. AFINN solves such a problem by modification of the learning and inference algorithm. 相似文献
11.
In this paper, a hybrid Taguchi-genetic algorithm (HTGA) is applied to solve the problem of tuning both network structure and parameters of a feedforward neural network. The HTGA approach is a method of combining the traditional genetic algorithm (TGA), which has a powerful global exploration capability, with the Taguchi method, which can exploit the optimum offspring. The Taguchi method is inserted between crossover and mutation operations of a TGA. Then, the systematic reasoning ability of the Taguchi method is incorporated in the crossover operations to select the better genes to achieve crossover, and consequently enhance the genetic algorithms. Therefore, the HTGA approach can be more robust, statistically sound, and quickly convergent. First, the authors evaluate the performance of the presented HTGA approach by studying some global numerical optimization problems. Then, the presented HTGA approach is effectively applied to solve three examples on forecasting the sunspot numbers, tuning the associative memory, and solving the XOR problem. The numbers of hidden nodes and the links of the feedforward neural network are chosen by increasing them from small numbers until the learning performance is good enough. As a result, a partially connected feedforward neural network can be obtained after tuning. This implies that the cost of implementation of the neural network can be reduced. In these studied problems of tuning both network structure and parameters of a feedforward neural network, there are many parameters and numerous local optima so that these studied problems are challenging enough for evaluating the performances of any proposed GA-based approaches. The computational experiments show that the presented HTGA approach can obtain better results than the existing method reported recently in the literature. 相似文献
12.
Fuzzy logic allows mapping of an input space to an output space. The mechanism for doing this is through a set of IF-THEN statements, commonly known as fuzzy rules. In order for a fuzzy rule to perform well, the fuzzy sets must be carefully designed. A major problem plaguing the effective use of this approach is the difficulty of automatically and accurately constructing the membership functions. Genetic Algorithms (GAs) is a technique that emulates biological evolutionary theories to solve complex optimization problems. Genetic Algorithms provide an alternative to our traditional optimization techniques by using directed random searches to derive a set of optimal solutions in complex landscapes. GAs literally searches towards the two end of the search space in order to determine the optimum solutions. Populations of candidate solutions are evaluated to determine the best solution. In this paper, a hybrid system combining a Fuzzy Inference System and Genetic Algorithms—a Genetic Algorithms based Takagi-Sugeno-Kang Fuzzy Neural Network (GA-TSKfnn) is proposed to tune the parameters in the Takagi-Sugeno-Kang fuzzy neural network. The aim is to reduce unnecessary steps in the parameters sets before they can be fed into the network. Modifications are made to various layers of the network to enhance the performance. The proposed GA-TSKfnn is able to achieve higher classification rate when compared against traditional neuro-fuzzy classifiers. 相似文献
13.
Fuzzy rule derivation is often difficult and time-consuming, and requires expert knowledge. This creates a common bottleneck in fuzzy system design. In order to solve this problem, many fuzzy systems that automatically generate fuzzy rules from numerical data have been proposed. In this paper, we propose a fuzzy neural network based on mutual subsethood (MSBFNN) and its fuzzy rule identification algorithms. In our approach, fuzzy rules are described by different fuzzy sets. For each fuzzy set representing a fuzzy rule, the universe of discourse is defined as the summation of weighted membership grades of input linguistic terms that associate with the given fuzzy rule. In this manner, MSBFNN fully considers the contribution of input variables to the joint firing strength of fuzzy rules. Afterwards, the proposed fuzzy neural network quantifies the impacts of fuzzy rules on the consequent parts by fuzzy connections based on mutual subsethood. Furthermore, to enhance the knowledge representation and interpretation of the rules, a linear transformation from consequent parts to output is incorporated into MSBFNN so that higher accuracy can be achieved. In the parameter identification phase, the backpropagation algorithm is employed, and proper linear transformation is also determined dynamically. To demonstrate the capability of the MSBFNN, simulations in different areas including classification, regression and time series prediction are conducted. The proposed MSBFNN shows encouraging performance when benchmarked against other models. 相似文献
14.
Sales forecasting plays a very important role in business operation. Many researches generally employ statistical methods, such as regression or auto-regressive integrated moving average model, to forecast the product sales. However, they only can consider the quantitative data. Some exogenous qualitative variables have more influence on forecasting result. Thus, this study attempts to propose a integrated forecasting system which is able to consider both quantitative and qualitative factors to achieve a more comprehensive result. Basically, fuzzy neural network is first employed to capture the expert knowledge regarding some qualitative factors. Then, it is combined with the time series data using an artificial immune system based back-propagation neural network. A laptop sales data set provided by a distributor in Taiwan is applied to verify the proposed approach. The computational result indicates that the proposed approach is superior to other forecasting methods. It can be used to decrease the inventory costs and enhance the customer satisfaction. 相似文献
16.
This paper presents the tuning of the structure and parameters of a neural network using an improved genetic algorithm (GA). It is also shown that the improved GA performs better than the standard GA based on some benchmark test functions. A neural network with switches introduced to its links is proposed. By doing this, the proposed neural network can learn both the input-output relationships of an application and the network structure using the improved GA. The number of hidden nodes is chosen manually by increasing it from a small number until the learning performance in terms of fitness value is good enough. Application examples on sunspot forecasting and associative memory are given to show the merits of the improved GA and the proposed neural network. 相似文献
17.
A hybrid supervisory control system using a recurrent fuzzy neural network (RFNN) is proposed to control the mover of a permanent magnet linear synchronous motor (PMLSM) servo drive for the tracking of periodic reference inputs. First, the field-oriented mechanism is applied to formulate the dynamic equation of the PMLSM. Then, a hybrid supervisory control system, which combines a supervisory control system and an intelligent control system, is proposed to control the mover of the PMLSM for periodic motion. The supervisory control law is designed based on the uncertainty bounds of the controlled system to stabilize the system states around a predefined bound region. Since the supervisory control law will induce excessive and chattering control effort, the intelligent control system is introduced to smooth and reduce the control effort when the system states are inside the predefined bound region. In the intelligent control system, the RFNN control is the main tracking controller which is used to mimic a idea control law and a compensated control is proposed to compensate the difference between the idea control law and the RFNN control. The RFNN has the merits of fuzzy inference, dynamic mapping and fast convergence speed, In addition, an online parameter training methodology, which is derived using the Lyapunov stability theorem and the gradient descent method, is proposed to increase the learning capability of the RFNN. The proposed hybrid supervisory control system using RFNN can track various periodic reference inputs effectively with robust control performance. 相似文献
18.
In this paper, a cooperative binary-real particle swarm optimization is applied to tune the structure and parameters of a neural network. A neural network with switches of its links, which is used to decide whether there is a link between two neurons or not, is introduced firstly. Thus, the structure of a neural network can be decided by the switches. A cooperative binary-real particle swarm optimization algorithm is utilized to find the compact structures and optimal parameters of the proposed neural network. The number of hidden nodes of the neural network is increased from a small number until its learning ability is achieved. The simulation experiments indicate that the proposed approach can obtain better results than the existing approaches in recent literature. 相似文献
20.
The electrocardiogram is a representative signal containing information about the condition of the heart. The shape and size of the P-QRS-T wave, the time intervals between its various peaks, etc. may contain useful information about the nature of disease afflicting the heart. However, these subtle details cannot be directly monitored by the human observer. Besides, since bio-signals are highly subjective, the symptoms may appear at random in the time scale. Therefore, the signal parameters, extracted and analysed using computers, are highly useful in diagnostics. This paper deals with the classification of certain diseases using artificial neural network (ANN) and fuzzy equivalence relations. The heart rate variability is used as the base signal from which certain parameters are extracted and presented to the ANN for classification. The same data is also used for fuzzy equivalence classifier. The feedforward architecture ANN classifier is seen to be correct in about 85% of the test cases, and the fuzzy classifier yields correct classification in over 90% of the cases. 相似文献
|