首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of NO on vanadia–titania samples pre-subjected to different reduction treatments has been studied by FTIR spectroscopy. When the NO adsorption is performed at 85 K on oxidized samples, antisymmetric NONO species, typical for V5+ sites, are detected and characterized by bands at 1779 and 1686 cm−1. At ambient temperature, however, adsorption is negligible and only with time reactive adsorption occurs producing NO+ (2120 cm−1), nitro/nitrato species (bands in the 1650–1100 cm−1 region) and weakly adsorbed NO (broad band at 1915 cm−1). Adsorption of NO at ambient temperature on reduced samples results in the formation of two types of species: (i) V4+(NO)2 dinitrosyls characterized by νs(NO) and νas(NO) at 1903–1880 and 1769–1753 cm−1, respectively, and (ii) V3+(NO)2 complexes, which give rise to νs(NO) at 1834–1822 cm−1 and νas(NO) at 1697–1685 cm−1. At low temperature the dinitrosyls are transformed into species in which more than one (NO)2 dimer is attached to one cationic site. Addition of O2 to NO, preadsorbed on reduced vanadia–titania samples, results in a fast oxidation of the V3+(NO)2 species, whereas the V4+(NO)2 complexes are more stable and do not disappear completely in the presence of oxygen. The results obtained suggest that NO is a convenient probe molecule for the analysis of the oxidation state of vanadium in vanadia–titania catalysts. To prevent oxidation of reduced vanadium sites, low equilibrium pressures of NO and registration of the IR spectrum soon after the NO admission are recommended. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
FTIR spectra are reported of CO2 and CO2/H2 on a silica-supported caesium-doped copper catalyst. Adsorption of CO2 on a “caesium”/silica surface resulted in the formation of CO2 and complexed CO species. Exposure of CO2 to a caesium-doped reduced copper catalyst produced not only these species but also two forms of adsorbed carboxylate giving bands at 1550, 1510, 1365 and 1345 cm−1. Reaction of carboxylate species with hydrogen at 388 K gave formate species on copper and caesium oxide in addition to methoxy groups associated with caesium oxide. Methoxy species were not detected on undoped copper catalyst suggesting that caesium may be a promoter for the methanol synthesis reaction. Methanol decomposition on a caesium-doped copper catalyst produced a small number of formate species on copper and caesium oxide. Methoxy groups on caesium oxide decomposed to CO and H2, and subsequent reaction between CO and adsorbed oxygen resulted in carboxylate formation. Methoxy species located at interfacial sites appeared to exhibit unusual adsorption properties.  相似文献   

3.
The electro-catalytic oxidation of methanol on a Ni–Cu alloy (NCA) with atomic ratio of 60/40 having previously undergone 50 potential sweep cycles in the range 0–600 mV vs. (Ag/AgCl) in 1 m NaOH was studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (EIS). The electro-oxidation was observed as large anodic peaks both in the anodic and early stages of the cathodic direction of potential sweep around 420 mV vs. (Ag/AgCl). The electro-catalytic surface was at least an order of magnitude superior to a pure nickel electrode for methanol oxidation. The diffusion coefficient and apparent rate constant of methanol oxidation were found to be 2.16 × 10−4 cm2 s−1 and 1979.01 cm3 mol−1 s−1, respectively. EIS studies were employed to unveil the charge transfer rate as well as the electrical characteristics of the catalytic surface. For the electrochemical oxidation of methanol at 5.0 m concentration, charge transfer resistance of nearly 111 Ω was obtained while the resistance of the electro-catalyst layer was ca. 329 Ω.  相似文献   

4.
Bimetallic lanthanide (Ln: Eu or Yb)–Ni/SiO2 catalysts prepared by the use of dissolution of lanthanide metals in liquid ammonia have been studied by infrared spectroscopy for dinitrogen adsorption. The infrared spectra were measured at 133–300 K using Ln–Ni/SiO2 obtained when the Eu or Yb metal dissolved in liquid ammonia reacted with 20 mass% Ni/SiO2 in different ratios. Infrared spectra for Eu–Ni/SiO2 showed absorption bands at 2336, 2265, 2254 and 2227 cm−1 at 133 K, which disappeared upon evacuation. The adsorbed state was found to be all molecular from the isotope shift using 28N2 and z30N28. The bands at 2254 and 2227 cm−1 of them were assigned to new adsorbed dinitrogen species resulting from synergetic interactions between the europium and nickel metal. The concentration of adsorbed dinitrogen on Eu–Ni/2 varied markedly with the Eu/Ni ratios, and particularly, it increased in the region of high Eu content. Upon introduction of ytterbium onto nickel, new bands at 2254 and 2226 cm−- similarly appeared. However, the dependence of dinitrogen adsorption as a function of Yb content in Yb–Ni/SiO2> was somewhat different from that for Eu–Ni/SiO2. The effects of lanthanide on the surface of Ln–Ni/SiO2 were discussed in connection with the variation in catalytic properties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The interaction of CO with ceria under conditions typically used to measure the oxygen storage capacity (OSC) of automotive three way catalysts (TWC) has been investigated by in situ Raman spectroscopy. During exposure of the ceria to CO at 623 K vibrational bands at 1582–1600 and 1331–1340 cm−1 appeared; these bands increased with increasing time of exposure to CO. The band positions are consistent with phonon modes of carbon; however, assignment to carboxylate species or carbonate species cannot be excluded. Subsequent exposure to O2 at room temperature resulted in a decrease in the intensities of the 1582–1600 and 1331–1340 cm−1 bands by more than 90%. As well, exposure to O2 at room temperature also resulted in the appearance of Raman modes characteristic of formate and peroxide surface species. The mechanism by which formate forms upon room temperature O2 exposure is discussed in the context of the assignment of the 1582–1600 and 1331–1340 cm−1 bands to carbon phonon modes which result from the disproportionation of CO on reduced ceria.  相似文献   

6.
Raman spectra of SOx adsorbed on γ-alumina and Pt/γ-alumina model catalysts have been obtained with a 244 nm Raman spectrometer. Strong peaks in the 980–1380 cm-1 region characteristic of adsorbed sulfates are clearly portrayed in the spectra, which contrast with fluorescence-dominated scans obtained using visible excitation. Broad bands are also observed in the 3500–3700 cm-1 O–H stretch region on the γ-alumina, which belong to weakly-bound physisorbed water and more strongly-bound surface hydroxyls. These features are monitored as the samples are heated up to 600°C in the presence of nitrogen. The sulfate peaks vary in position depending on whether or not the γ-alumina is loaded with platinum, hydrated, or dehydrated. Platinum appears to inhibit the physisorption of water and the formation of hydroxyls on the γ-alumina surface, as evidenced by the absence of O–H stretch vibrations on the Pt-loaded sample. Our spectral data demonstrate that UV Raman spectroscopy is a useful technique for analytical studies of adsorbed SOx on γ-alumina, and holds promise for future in situ investigations of other adsorbed species on catalytic substrates of automotive interest. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Fourier transform infrared (FTIR) spectroscopy provides a simple and rapid means of detecting lard blended with chicken, lamb, and cow body fats. The spectral bands associated with chicken, lamb, and cow body fats and their lard blends were recorded, interpreted, and identified. Qualitative differences between the spectra are proposed as a basis for differentiating between the pure animal fats and their blends. A semiquantitative approach is proposed to measure the percent of lard in blends with lamb body fat (LBF) on the basis of the frequency shift of the band in the region 3009–3000 cm−1, using the equation y=0.1616x+3002.10. The coefficient of determination (R 2) was 0.9457 with a standard error (SE) of 1.23. The percentage of lard in lard/LBF blends was also correlated to the absorbance at 1417.89 and 966.39 cm−1 by the equations y=0.0061x+0.1404 (R 2=0.9388, SE=0.018) and y=0.004x+0.1117 (R 2=0.9715, SE=0.009), respectively. For the qualitative determination of lard blended with chicken body fat (CF), the FTIR spectral bands in the frequency ranges of 3008–3000, 1418–1417, 1385–1370, and 1126–1085 cm−1 were employed. Semiquantitative determination by measurement of the absorbance at 3005.6 cm−1 is proposed, using the equation y=0.0071x+0.1301 (R 2=0.983, SE=0.012). The percentage of lard in lard/GF blends was also correlated to the absorbance at 1417.85 cm−1 (y=0.0053x+0.0821, with R 2=0.9233, SE=0.019) and at 1377.58 cm−1 (y=0.0069x+0.1327, with R 2=0.9426, SE=0.022). For blends of lard with cow body fat (CBF) bands in the range 3008–3006 cm−1 and at 1417.8 and 966 cm−1 were used for qualitative detection. The equation y=−0.005x+0.3188 with R 2=0.9831 and SE=0.0086 was obtained for semiquantitative determination at 966.22 cm−1.  相似文献   

8.
The coordination and oxidation states of surface vanadia species on different oxide supports were studied by in situ UV–Vis DRS and in situ Raman spectroscopy. Surface vanadia species remain essentially oxidized during the steady-state ethane oxidation reaction. Polymeric surface vanadia species are more reducible than isolated ones, but this has only a minor effect on the ethane oxidation reactions. It appears that only one surface V site is involved in the rate-determining step for ethane oxidation. The reducibility of supported vanadium oxide species corresponds with the TOF values, but not with the average oxidation state under steady-state reaction. Ceria- and niobia-supported vanadia catalysts do not follow this trend due to solid-state reaction between the surface vanadia species and the oxide support that decreases the number of exposed vanadia sites. This solid-state reaction does not appear to affect the nature of the active site, which is associated with the V–O–Support bond rather than with the terminal V=O bond.  相似文献   

9.
Temperature‐programmed in situ Raman spectroscopy is used to understand the effect of surface vanadia coverage on the structure, reducibility and performance for the oxidation of methane on V2O5/SiO2 catalysts. The vanadia coverage on silica has no effect on its structure below its dispersion‐limit loading (“monolayer” coverage); however, the interactions among surface vanadia species under reducing conditions become increasingly important. This interaction appears to operate through the sharing of oxygen sites facilitating the reduction, but it does not alter the total reducibility. The probability for this interaction to take place increases with vanadium oxide surface coverage. It is therefore expected that under reaction conditions the catalyst with higher vanadia coverage would have a greater capacity to release oxygen. This would increase the activity per vanadium site. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Adsorption of NO on Fe‐ZSM‐5 leads to formation of Fen+–NO (n = 2 or 3) species (1880 cm-1), Fe2+(NO)2 complexes (1920 and 1835 cm-1) and NO+ (2133 cm-1). Water strongly suppresses the formation of NO+ and Fen+(NO)2 and more slightly the formation of Fen+ –NO. Introduction of oxygen to NO converts the nitrosyls into surface nitrates (1620 and 1575 cm-1) and this process is almost unaffected by water. The nitrates are thermally stable up to ca. 300°C, but readily interact with propane at 200°C, thus forming surface C–H–N–O deposit (bands in the 1700–1300 cm-1 region). Here again, water does not hinder the process. The C–H–N–O deposit is relatively inert (it does not interact with NO or NO + O2 at ambient temperature) but, at temperatures higher than 250 °C, it is decomposed to NCO- species (bands at 2215 (Fe–NCO) and 2256 cm-1 (Al–NCO)). In the presence of water, however, the Fe–NCO species only are formed. At ambient temperature the NCO- species are inert towards NO and O2, but easily react with a NO + O2 mixture. The mechanism of the selective catalytic reduction of nitrogen oxides on Fe‐ZSM‐5 and the effect of water on the process are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The outermost surface compositions and chemical nature of active surface sites present on the orthorhombic (M1) Mo–V–O and Mo–V–Te–Nb–O phases were determined employing methanol and allyl alcohol chemisorption and surface reaction in combination with low energy ion scattering (LEIS). These orthorhombic phases exhibited vastly different behavior in propane (amm)oxidation reactions and, therefore, represented highly promising model systems for the study of the surface active sites. The LEIS data for the Mo–V–Te–Nb–O catalyst indicated surface depletion for V (−23%) and Mo (−27%), and enrichments for Nb (+55%) and Te (+165%) with respect to its bulk composition. Only minor changes in the topmost surface composition were observed for this catalyst under the conditions of the LEIS experiments at 400 °C, which is a typical temperature employed in these propane transformation reactions. These findings strongly suggested that the bulk orthorhombic Mo–V–Te–Nb–O structure is terminated by a unique active and selective surface layer in propane (amm)oxidation. Moreover, direct evidence was obtained that the topmost surface VO x sites in the orthorhombic Mo–V–Te–Nb–O catalyst were preferentially covered by chemisorbed allyloxy species, whereas methanol was a significantly less discriminating probe molecule. The surface TeO x and NbO x sites on the Mo–V–Te–Nb–O catalyst were unable to chemisorb these probe molecules to the same extent as the VO x and MoO x sites. These findings suggested that vastly different catalytic behavior exhibited by the Mo–V–O and Mo–V–Te–Nb–O phases is related to different surface locations of V5+ ions in the orthorhombic Mo–V–O and Mo–V–Te–Nb–O catalysts. Although the proposed isolated V5+ pentagonal bipyramidal sites in the orthorhombic Mo–V–O phase may be capable of converting propane to propylene with modest selectivity, the selective 8-electron transformation of propane to acrylic acid and acrylonitrile may require the presence of several surface VO x redox sites lining the entrances to the hexagonal and heptagonal channels of the orthorhombic Mo–V–Te–Nb–O phase. Finally, the present study strongly indicated that chemical probe chemisorption combined with low energy ion scattering (LEIS) is a novel and highly promising surface characterization technique for the investigation of the active surface sites present in the bulk mixed metal oxides.  相似文献   

12.
The combination of attenuated total reflectance (ATR) and mid-infrared spectroscopy (MIRS) with statistical multidimensional techniques made it possible to extract relevant information from MIR spectra of lipid-rich food products. Wavenumber assignments for typical functional groups in fatty acids were made for standard fatty acids: Absorption bands around 1745 cm−1, 2853 cm−1, 2954 cm−1, 3005 cm−1, 966 cm−1, 3450 cm−1 and 1640 cm−1 are due to absorption of the carbonyl group, C−H stretch, =CH double bonds of lipids and O−H of lipids, respectively. In lipid-rich food products, some bands are modified. Water strongly absorbs in the region of 3600–3000 cm−1 and at 1650 cm−1 in butters and margarines, allowing one to rapidly differentiate the foods as function of their water content. Principal component analysis was used to emphasize the differences between spectra and to rapidly classify 27 commercial samples of oils, butters and margarines. As the MIR spectra contain information about carbonyl groups and double bonds, the foods were classified with ATR-MIR, in agreement with their degree of esterification and their degree of unsaturation as determined from gas-liquid chromatography analysis. However, it was difficult to differentiate the studied food products in terms of their average chainlength.  相似文献   

13.
In situ MAS NMR spectroscopy under flow conditions and on‐line gas chromatography have been applied to study the onset of the conversion of methanol on zeolite HZSM‐5 at temperatures between 373 and 573 K. In the steady states of methanol conversion at T ⩾ 523 K, by on‐line gas chromatography mainly the formation of ethene and propene was observed. Simultaneously recorded in situ 13C MAS NMR spectra show signals at 12–25 ppm and at ca. 125–131 ppm indicating the presence of adsorbed C4–C6 olefins. The observation of these adsorbates on a working catalyst supports the “hydrocarbon pool” mechanism previously proposed for the methanol‐to‐hydrocarbon conversion on acidic zeolites. Methanol conversion at 473 and 573 K and subsequent purging of the catalyst with dry nitrogen at 293 K led to a 13C MAS NMR signal at 59 ppm due to methoxy groups. No hints to the presence of ethoxy, propoxy or butoxy groups and the formation of alkyl oxonium ions were found by in situ 13C MAS NMR spectroscopy under flow conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A model system for the study of structural and chemical properties of monolayers and multilayers of vanadium oxide immobilized on titania is presented. Investigation of the planar oxide-oxide interface by XP, UV and IS spectroscopy indicated that vanadium immobilized by a single impregnation step exists as an incomplete heterogeneous layer containing well dispersed V4+ species. Increase of the vanadia loading by multiple impregnations led to vanadia agglomerates with higher apparent oxidation state of the vanadium. TD spectroscopy with O2 and CO2 as probe molecules revealed that the chemical reactivity of the vanadia surface species depends on their structure. The surface containing well-dispersed vanadia species exchanged oxygen more easily and showed pronounced interactions with CO2.  相似文献   

15.
The SO2 oxidation over V2O5/AC catalyst was studied using an in situ diffuse reflectance infrared Fourier transformation spectroscopy technique at 120 °C. Results reveal that the surface oxygen groups could neither act as active sites for SO2 oxidation nor supply the oxygen needed for V V ?V IV redox cycle. The vanadia species and gas phase oxygen are essential for SO2 oxidation. During SO2 oxidation over V2O5/AC, the surface hydroxyl groups involve in the formation of sulfate species. The role of water vapor in flue gas might be to supplement the hydroxyl groups consumed so that the SO2 oxidation could continue.  相似文献   

16.
Pd–chloride precursor salt was used to prepare Pd/Al2O3 catalysts. TPSR measurements showed three distinct reactions for the oxidation of propane on palladium surface under excess of hydrocarbon: complete oxidation, steam reforming and propane hydrogenolysis. Propane oxidation on palladium catalysts was related to the Pd2+ sites observed on Pd/Al2O3 through infrared of adsorbed carbon monoxide. In fresh catalysts reduced by H2, the IR spectra showed the linear and bridge adsorbed CO species on the Pd0 surface. After propane reaction, a new band at 2130 cm-1 related to CO adsorption on Pd2+ species was noted. Carbon monoxide species adsorbed on Pd0 were also observed in all samples after reaction. Our results suggest surface ratios of Pd0/PdO during the propane oxidation. On the other hand, time on stream conversions of the complete oxidation of propane were affected by either the water generated during the reaction or added as a reactant at 10 vol%. The water generated by the reaction helped to eliminate chlorine residues in the form of oxychloride species leading to an increasing of the activity. However, the presence of water into the reaction mixture caused a strong decreasing of the activity. The inhibition mechanism of propane oxidation in the presence of water consisted in the dissociative adsorption of water on palladium sites with the possible formation of palladium hydroxide (Pd–OH) at the surface, diminishing the number of active surface sites. Dynamic fluctuations into the reaction conditions supported the idea that a pseudo‐equilibrium adsorption–desorption of water was reached. After water removal or increasing in the reaction temperature the equilibrium was shifted to the direction of OH–Pd decomposition. This behavior suggests that the inhibitory effect of water is a reversible phenomenon, being a function of the amount of water and the reaction temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Potassium and acid ferrierites were impregnated with boron species by wet and incipient wetness techniques. All samples display a medium-intensity band at 3,450–3,470 cm−1 associated to Si−OH···O groups corresponding to boron-containing units. The 1,398–1,404 cm−1 band assigned to the B–O stretching in BO3 units does not appear on boron–potassium–ferrierite prepared by wet impregnation. Catalytic performance during the linear butene skeletal isomerization was measured. At 300 °C, boron impregnated by incipient wetness technique on acid ferrierite reduces both linear butene conversion at a short time and isobutene yield in all time range. Boron–potassium–ferrierite prepared by wet impregnation has a suitable acidity to promote isobutene production. At 450 °C, this sample shows the best performance, being the isobutene yield 1.7 times higher than the acid-ferrierite one and reaching the highest isobutene selectivity (92%). This performance is maintained with time. Both isobutene yield and by-product distribution are strongly affected by temperature; dimer intermediates are formed. Finally, both kinds of hydroxyl groups corresponding to 3,466 and 3,635 cm−1 bands influence the isobutene production whereas BO3 sites are inactive for this reaction.  相似文献   

18.
Diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) has been used to study NH3 and NO adsorption over a 15% w/w vanadia/titania catalyst. NH3 is adsorbed as coordinate NH3 and NH4+ species over the oxidised catalyst, leading to the reduction of the vanadia surface. At 300°C, adsorbed nitrosyls species are detected, suggesting that the oxidation of gaseous or adsorbed ammonia species takes place over the V=O sites. Coadsorption experiments show that NO is able to reoxidise about the 57% of the reduced V=O groups, resulting in N2, according to a NO+V→1/2N2+V=O reaction. On the other hand, NO is only adsorbed over vanadia reduced surfaces. The measure of the area of the 2ν(V=O) bands results in an estimate of the oxidation state of vanadium. From this estimate it can be concluded that nitrosyls species are adsorbed on the catalyst surface for vanadium atoms having an oxidation state ranging from +4 to +3.1.  相似文献   

19.
This study evaluated the capabilities of a handheld mid-infrared (MIR) spectrometer combined with multivariate analysis to characterize oils, monitor chemical processes occurring during oxidation, and to determine fatty acid composition. Vegetable oils (corn, peanut, sunflower, safflower, cottonseed, and canola) were stored at 65 °C for 30 days to accelerate oxidation reactions. Aliquots were drawn at 5 day intervals and analyzed by benchtop and portable handheld mid-infrared devices (4,000–700 cm−1) and reference methods (IUPAC 2301 [1], 2302 [1]; AOCS Cd 8-58 [2]; and Shipe 1979 [3]). PLSR and soft independent modeling of class analogy (SIMCA) models were developed for oil classification and estimation of oil stability parameters. Models developed from MIR spectra obtained with a benchtop spectrometer equipped with a 3-bounce ATR device resulted in superior discriminative performances for classifying oils as compared to those obtained from handheld spectra (single-bounce ATR). Models developed from reference tests and handheld spectra showed prediction errors (SECV) of 1 meq/kg for peroxide value, 0.09% for acid value and 2% for determination of unsaturated fatty acids in different oils. Spectral regions ~3,012–2,850 cm−1 (C–H stretching bands/shoulders of fatty acids), ~1,740 cm−1 (C=O stretching of esters), and ~1,114 cm−1 (–C–O stretching) were found to be important for prediction. Handheld-FTIR instruments combined with multivariate-analysis showed promise for determination of oil quality parameters. Portability and ease-of-use makes the handheld device a great alternative to traditional methods.  相似文献   

20.
Raman and resonance Raman spectra of plasma lipoproteins ± malondialdehyde were studied at concentrations which block the normal receptor-mediated uptake by cells. The strong resonance Raman bands at about 1010, 1162 and 1530 cm−1, due to the presence of carotenoids in the lipoproteins, are envisaged as structural probes. High resolution resonance Raman spectra of the 1500–1600 cm−1 region reveal multiple features suggesting the coexistence of several structural populations of β-carotene whose precise assignment is complex. When plasma lipoproteins are reacted with malondialdehyde, a complex change occurs in the resonance Raman banding of β-carotene in the 1500–1600 cm−1 region. Malonaldehyde (MDA) also modifies the acoustical region (70–200 cm−1 of low density lipoprotein (LDL) lipids. We suggest that malondialdehyde association with plasma lipoproteins alters the lipid structure via apoprotein or apoprotein/lipid associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号