共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
2 MW液态钍基熔盐实验堆主屏蔽温度场分析 总被引:2,自引:0,他引:2
反应堆主屏蔽是核反应堆的重要组成部分,用来有效降低反应堆运行时屏蔽体外的辐射剂量水平,以满足反应堆部件材料对辐射限制的要求。温度是影响反应堆主屏蔽性能的重要因素。针对2MWth液态熔盐堆(2-MW liquid-fueled molten salt experimental reactor,TMSR-LF1),采用MCNP软件获得功率分布后,利用Fluent软件对主屏蔽进行温度场计算。计算过程中利用Python语言编写了程序(MCNP to Fluent,MTF)来实现将MCNP(Monte Carlo N Particle Transport Code)计算结果转换为功率密度的空间分布,以用户自定义函数(User-Defined Function,UDF)形式导入到Fluent,解决了MCNP计算结果不能直接导入到Fluent的问题,并分别计算了TMSR-LF1熔盐堆不同环境温度下的主屏蔽温度场分布情况。结果表明,在环境温度为5℃、18℃、25℃、30℃、35℃、40℃情况下,TMSR-LF1熔盐堆主屏蔽普通混凝土墙温度均低于要求限值,达到设计要求。 相似文献
3.
4.
气载放射性流出物在近场范围内的扩散是核设施环境影响评价研究的重要内容之一,传统的高斯模型由于受到复杂建筑物的影响导致计算结果偏差比较大,不宜用于近场扩散的数值模拟。本文采用计算流体动力学(Computational Fluid Dynamics, CFD)方法以2 MW液态钍基熔盐实验堆的拟定场址为研究对象,开展放射性气态流出物在近场范围内分布规律的研究,分析风速、烟囱高度、风向等参数对气态流出物大气弥散因子分布的影响。结果表明,对于高架排放,由烟羽抬升的影响使得风速越大近场范围的放射性核素大气弥散因子越高;在下风向建筑群迎风侧均易出现放射性核素集聚区,烟囱高度越低集聚现象越明显。本研究的结果可为熔盐堆场区辐射环境影响评价及建筑物的布局、核应急提供参考依据。 相似文献
5.
6.
7.
8.
钍基熔盐反应堆(ThoriumMolten Salt Reactor,TMSR)项目是中国科学院科技先导项目之一。基于10 MW热功率熔盐反应堆-固体燃料(ThoriumMolten Salt Reactor-Solid Fuel,TMSR-SF)的设计,对TMSR的关键技术安全分析进行了初步研究。TMSR-SF与现有反应堆之间的差异对核安全审查提出挑战,TMSR-SF审查方法的研究将准备其安全审查的技术和要求。固态燃料熔盐实验堆安全分析关键技术初步研究包含4个方面:堆芯核设计关键安全限值、事故序列及验收准则、源项及其审评方法和验收准则、概率安全评价方法和始发事件。首先对其它类型反应堆的安全审查方法进行了研究,对其关键参数和重要规定做了概述,并借鉴了高温气体冷堆和钠冷却快堆的审评要求和方法;然后使用蒙特卡罗和其他方法、模型来计算TMSR-SF的关键参数。应用逻辑图方法讨论概率风险评价(Probabilistic Risk Assessment,PRA)方法和始发事件清单。在本研究中,计算了核心核设计安全限值,研究和讨论事故列表和分类,讨论了TMSR-SF的PRA框架和始发事件清单,该研究将支持TMSR-SF的安全审查和安全设计。 相似文献
9.
熔盐快堆是当前国际上关注的热点之一,本文基于堆芯结构双流体方案,即裂变熔盐燃料和增殖熔盐介质各自独立冷却循环,利用氟化或氯化熔盐中钍铀重金属盐高温下的高溶解度特性,获得熔盐快堆的高增殖。通过比较钍铀燃料循环熔盐快堆的三种可行性熔盐燃料方案(LiF+ThF_4+UF_4、NaF+ThF_4+UF_4和NaCl+ThCl_3+UCl_3),采用基于反应堆安全分析和设计的综合性模拟程序SCALE(Standardized Computer Analyses for Licensing Evaluation),计算了中子能谱、反应性温度系数,分析了增殖比BR(breeding ratio)受反应堆裂变区、增殖区和ZrC中子反射层的尺寸影响、熔盐中~6Li和~(35)Cl同位素丰度的影响,以及熔盐密度误差对BR计算值的准确性影响、易裂变核素随反应堆运行时间演化等。在钍铀燃料循环熔盐快堆中,通过优化处理得到三种熔盐燃料方案的增殖比BR约为1.2。 相似文献
10.
熔盐快堆增殖是当前国际上关注的热点,本文基于堆芯结构双流体方案,利用氟化或氯化熔盐中铀钚重金属盐高温下的高溶解度特性,获得熔盐快堆的高增殖。对铀钚燃料循环熔盐快堆的三种可行性熔盐燃料方案(LiF+PuF_4+UF_4、NaF+PuF_4+UF_4和NaCl+PuCl_3+UCl_3),采用基于反应堆安全分析和设计的综合性模拟程序SCALE(Standardized Computer Analyses for Licensing Evaluation),计算了中子能谱、反应性温度系数。分析了增殖比BR(Breeding Ratio)受反应堆裂变区、增殖区和中子反射层的尺寸影响,熔盐中~6Li和~(35)Cl同位素丰度对BR的影响,以及BR随运行时间动态变化。计算结果表明:氯盐方案(BR=1.46)与两种氟盐方案(BR≈1.06)相比较,具有更大的增殖能力优势。结合熔盐相图、BR随重金属摩尔浓度变化和BR最大值随熔盐平均工作温度变化曲线,可以在熔盐快堆设计中快速确定熔盐的工作温度、重金属摩尔浓度和反应堆增殖比。 相似文献
11.
The molten salt reactor(MSR), as one of the Generation Ⅳ advanced nuclear systems, has attracted a worldwide interest due to its excellent performances in safety, economics, sustainability, and proliferation resistance. The aim of this work is to provide and evaluate possible solutions to fissile 233 U production and further the fuel transition to thorium fuel cycle in a thermal MSR by using plutonium partitioned from light water reactors spent fuel. By using an in-house developed tool, a breeding and burning(BB) scenario is first introduced and analyzed from the aspects of the evolution of main nuclides, net 233 U production, spectrum shift, and temperature feedback coefficient. It can be concluded that such a Th/Pu to Th/~(233)U transition can be accomplished by employing a relatively fast fuel reprocessing with a cycle time less than 60 days. At the equilibrium state, the reactor can achieve a conversion ratio of about 0.996 for the 60-day reprocessing period(RP) case and about 1.047 for the 10-day RP case.The results also show that it is difficult to accomplish such a fuel transition with limited reprocessing(RP is 180 days),and the reactor operates as a converter and burns the plutonium with the help of thorium. Meanwhile, a prebreeding and burning(PBB) scenario is also analyzed briefly with respect to the net 233 U production and evolution of main nuclides. One can find that it is more efficient to produce 233 U under this scenario, resulting in a double time varying from about 1.96 years for the 10-day RP case to about 6.15 years for the 180-day RP case. 相似文献
12.
小型模块化熔盐快堆燃料管理初步分析 总被引:1,自引:0,他引:1
由于燃料随熔盐流动的特性以及可以进行在线添料与处理的特点,液态燃料熔盐堆的燃耗分析与燃料管理和传统固态燃料反应堆有很大不同,需要针对液态燃料熔盐堆的特点重新开发燃耗分析与管理程序。本文针对液态燃料熔盐堆的熔盐流动特性以及在线添料与处理功能,基于MCNP5和ORIGEN2.1燃耗耦合程序,开发了适用于液态燃料熔盐堆的燃料管理程序,并应用于一种小型模块化熔盐快堆的燃料管理和分析,对比分析了5种不同运行方案以及分批在线添料情况下,运行30年期间keff的变化情况及重要核素的演化情况。计算结果表明,采用不断调整添料率的连续在线添料运行方案和固定批量添料的运行方案,都可以让小型模块化熔盐快堆维持运行在一个较小的keff波动范围之内。开发的燃料管理程序适用于液态燃料熔盐堆的研究,同时可以为液态燃料熔盐堆的设计及燃耗管理和分析提供有价值的参考。 相似文献
13.
There has been a resurgence of interest in fuel-in-salt Molten Salt Reactors (MSR); a number of governments and private companies are currently undertaking efforts to develop and commercialize MSR technology. Recent nuclear models used in the TENDL nuclear data library have estimated the cross section of the metastable state of 135Xe, 135mXe, to have a much larger cross section than the ground state of 135Xe. Thermal MSRs with continual online noble gas stripping of the fuel salt can operate in a regime where 135mXe makes up a notable fraction of the xenon worth, necessitating the implementation of these new cross-sections in the neutronic analysis of these advanced reactor types. To estimate the effect of 135mXe on reactor operation, a simplified mathematical model was produced with one neutron energy group and 135mXe cross section data from the TENDL-2015 nuclear data library. 235U and 233U systems were investigated. It was found that the steady-state xenon reactivity worth was considerably higher for some modes of operation when 135mXe was included in the xenon worth calculations. Based on available literature, it was found that proposed MSR concepts may operate in the modes of operation where 135mXe has a notable impact on steady-state xenon worth. This work highlights the need to include 135mXe in MSR models and the importance of acquiring evaluated cross-sections for 135mXe. 相似文献
14.
The Molten Salt Reactor (MSR) can meet the demand of transmutation and breeding. In this study, theoretical calculation of steady thermal hydraulic characteristics of a graphite-moderated channel type MSR is conducted. The DRAGON code is adopted to calculate the axial and radial power factor firstly. The flow and heat transfer model in the fuel salt and graphite are developed on basis of the fundamental mass, momentum and energy equations. The results show the detailed flow distribution in the core, and the temperature profiles of the fuel salt, inner and outer wall in the nine typical elements along the axial flow direction are also obtained. 相似文献
15.
Kun Zhuang Liangzhi Cao Tianliang Hu Hongchun Wu 《Journal of Nuclear Science and Technology》2017,54(8):878-890
The liquid fuel salt used in the molten salt reactors (MSRs) serves as the fuel and coolant simultaneously. On the one hand, the delayed neutron precursors circulate in the whole primary loop and part of them decay outside the core. On the other hand, the fission heat is carried off directly by the fuel flow. These two features require new analysis method with the coupling of fluid flow, heat transfer and neutronics. In this paper, the recent update of MOREL code is presented. The update includes: (1) the improved quasi-static method for the kinetics equation with convection term is developed. (2) The multi-channel thermal hydraulic model is developed based on the geometric feature of MSR. (3) The Variational Nodal Method is used to solve the neutron diffusion equation instead of the original analytic basis functions expansion nodal method. The update brings significant improvement on the efficiency of MOREL code. And, the capability of MOREL code is extended for the real core simulation with feedback. The numerical results and experiment data gained from molten salt reactor experiment (MSRE) are used to verify and validate the updated MOREL code. The results agree well with the experimental data, which prove the new development of MOREL code is correct and effective. 相似文献
16.
The Molten Salt Reactor (MSR) is one of the Generation IV nuclear reactor concepts that were selected by the Generation IV International Forum in 2000. The concept is based on liquid fuel instead of solid fuel assemblies. Besides the advantages, there are several aspects of operation that can hinder the realization of this reactor concept. In this paper, the authors investigate the neutronics behaviour of a new sub-concept that offers solutions for many of the technical problems. The analysis was performed using the particle transport code MCNPX 2.7. The paper focuses on the short-term and steady state heat source distribution in the fuel salt and in the graphite moderator. Accordingly, neither burn-up effects nor reactivity transients are considered. The sensitivity of the effective multiplication factor on different geometrical and material parameters was studied. The results obtained indicate that the main region of heat deposition is in the internal and external channels of the graphite moderator. Only a few percent of the total heat power is released in the graphite moderator, where the gamma and neutron related heat deposition is on the same scale. The results also prove that the heat source distribution does not change drastically upon the actuation of the control rods. 相似文献
17.
《核技术(英文版)》2016,(3):89-95
Radioactive fluoride wastes are generated during the operation of molten salt reactors(MSRs) and reprocessing of their spent fuel.Immobilization of these wastes in borosilicate glass is not feasible because of the very low solubility of fluorides in this host.Alternative candidates are thus an active topic of research including phosphatebased glasses,crystalline ceramics,and hybrid glass-ceramic systems.In this study,mixed fluorides were employed as simulated MSRs waste and incorporated into sodium aluminophosphate glass to obtain phosphate-based waste form.These waste forms were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.Leaching tests were performed in deionized water using the product consistency test A method.This study demonstrates that up to 20 mol%of simulated radioactive waste can be introduced into the NaA1 P glass matrix,and the chemical durability is much better than that of borosilicate.The addition of Fe_2O_3 in the NaAlP glass matrix results in increases of the chemical durability at the expense of fluoride loading(to 6.4 mol%).Phosphate glass vitrification of radioactive waste containing fluorides is a potential method to treat and dispose of MSR wastes. 相似文献
18.
《核技术(英文版)》2023,34(5):67-84
To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coefficient of reactivity(TCR)at an assembly level were characterized.A four-factor formula was introduced to explain how different reactivity coefficients behave in terms of the fuel salt volume fraction and assembly size.The results show that the fuel salt temperature coefficient(FSTC)is always negative owing to a more negative fuel salt density coefficient in the over-moderated region or a more negative Doppler coefficient in the under-moderated region.Depending on the fuel salt channel spacing,the graphite mod-erator temperature coefficient(MTC)can be negative or positive.Furthermore,an assembly with a smaller fuel salt channel spacing is more likely to exhibit a negative MTC.As the fuel salt volume fraction increases,the negative FSTC first weakens and then increases,owing to the fuel salt density effect gradually weakening from negative to positive feedback and then decreasing.Meanwhile,the MTC weakens as the thermal utilization coefficient caused by the graphite temperature effect deteriorates.Thus,the negative TCR first weakens and then strengthens,mainly because of the change in the fuel salt density coefficient.As the assembly size increases,the magnitude of the FSTC decreases monotonously owing to a monotonously weakened fuel salt Doppler coefficient,whereas the MTC changes from gradually weakened negative feedback to gradually enhanced positive feedback.Then,the negative TCR weakens.Therefore,to achieve a proper negative TCR,particularly a negative MTC,an assembly with a smaller fuel salt channel spacing in the under-moderated region is strongly recommended. 相似文献
19.
Charles Forsberg 《Progress in Nuclear Energy》2005,47(1-4):32-43
The Advanced High-Temperature Reactor is a new reactor concept that combines four existing technologies in a new way: (1) coated-particle graphite-matrix nuclear fuels (traditionally used for helium-cooled reactors), (2) Brayton power cycles, (3) passive safety systems and plant designs from liquid-metal-cooled fast reactors, and (4) low-pressure liquid-salt coolants with boiling points far above the maximum coolant temperature. The new combination of technologies enables the design of a large [2400- to 4000-MW(t)] high-temperature reactor, with reactor-coolant exit temperatures between 700 and 1000°C (depending upon goals) and passive safety systems for economic production of electricity or hydrogen. The AHTR [2400-MW(t)] capital costs have been estimated to be 49 to 61% per kilowatt (electric) relative to modular gas-cooled [600-MW(t)] and modular liquid-metal-cooled reactors [1000-MW(t)], assuming a single AHTR and multiple modular units with the same total electrical output. Because of the similar fuel, core design, and power cycles, about 70% of the required research is shared with that for high-temperature gas-cooled reactors. 相似文献
20.
《核技术(英文版)》2016,(3):196-202
The Molten Salt Reactor(MSR) is one of the six advanced reactor nuclear energy systems for further research and development selected by Generation IV International Forum(GIF),which is distinguished by its core in which the fuel is dissolved in molten fluoride salt.Because fuel flow in the primary loop,the depletion of MSR is different from that of solid-fuel reactors.In this paper,an MCNP5 and ORIGEN2 Coupled Burnup(MOCBurn) code for MSR is developed under the MATLAB platform.Some new methods and novel arrangements are used to make it suitable for fuel flow in the MSR.To consider the fuel convection and diffusion in the primary loop of MSR,fuel mixing calculation is carried out after each burnup time step.Modeling function for geometry with repeat structures is implicated for reactor analysis with complex structures.Calculation for a high-burnup reactor pin cell benchmark is performed using the MOCBurn code.Results of depletion study show that the MOCBurn code is suitable for the traditional solid-fuel reactors.A preliminary study of the fuel mixture effect in MSR is also carried out. 相似文献