首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Numerical study on turbulent mixed convection in inclined plane channels, from 15° to 90° (vertical), was carried out to examine the effect of inclination on fluid flow and heat transfer distributions. The turbulent air flows upward or downward into the duct with one wall heated from bottom. Calculation results with several kinds of k-εtype turbulence models were used to compare the experimental data with those in literatures to determine suitable model. The dependents of Nusselt number on the inclination angle of both the buoyancy-aided and buoyancy-opposed flow are discussed.  相似文献   

2.
Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and the Reynolds stress model(RSM),are employed in the numerical simulations of direct current(DC)arc plasma torches in the range of arc current from 80 A to 240 A and air gas flow rate from 10 m^3 h^-1 to 50 m^3 h^-1.The calculated voltage,electric field intensity,and the heat loss in the arc chamber are compared with the experiments.The results indicate that the arc voltage,the electric field,and the heat loss in the arc chamber calculated by using the standard k-ω model,the RNG k-ωmodel taking into account the low Reynolds number effect,and the realizable k-ω model are much larger than those in the experiments.The RSM predicts relatively close results to the experiments,but fails in the trend of heat loss varying with the gas flow rate.The calculated results of the SST k-ω model are in the best agreement with the experiments,which may be attributed to the reasonable predictions of the turbulence as well as its distribution.  相似文献   

3.
The current interruption capability of a gas,when used in high voltage gas-blast circuit breakers,depends not only on its material properties but also the flow field since turbulence plays a dominant role in arc cooling during the interruption process.Based on available experimental results,a study of CO2 switching arcs under a DC (direct current) current in the model circuit breaker has been conducted to calibrate CO2 arc model and to analyse its electric and thermal property.Through detailed analysis of the results mechanisms responsible for the temperature distribution are identified and the domain energy transportation process of different region discussed.The present work provides significant coefficients for CO2 switching arc simulation and gives a better understanding of CO2 arc burning mechanisms.  相似文献   

4.
The simplified modeling for analysis on MHD stability of free surface jet flow in a gradient magnetic fields is based on the theoretical and experimental results on channel liquid metal MHD flow, especially, the results of MHD flow velocity distribution in cross-section of channels (rectangular duct and circular pipe), and the expected results from the modeling are well agreed with the recent experimental data obtained. It is the first modeling which can efficiently explain the experimental results of liquid-metal free surface jet flow.  相似文献   

5.
A modularized code based on the Finite Element QZ (FEQZ) method is developed,for a better estimate of the critical speed and a more convenient method of rotor-dynamic stability analysis for a gas bearing high speed turboexpander rotor system with actual structure and appli-cation of a cryogenic turboexpander.This code is then validated by the experimental data of a gas bearing turboexpander,with a rotor diameter of 25 mm and a rated speed of 106,400 rpm.With this code,four rotors with different structures,available to the turboexpander,are parametrically analyzed by the available speed range,vibration modes and logarithmic attenuation rate.The results suggest that the rotor with a structure of two thrust collars on the system exhibits a better performance in the designed conditions.  相似文献   

6.
As electron-beam generating plasma is widely applied, the software tool EGS4 (Electron-Gamma Shower) was used to simulate the transmission and energy deposition of electron-beam in air. The simulation results indicated that the range of the electron-beam was inversely proportional to the gas pressure in a wide range of gas pressure, and the electron-beam of 200 keV could generate a plasma with a density 10^11 cm^-3 in air of latm. In addition, the energy distribution of the beam-electron and plasma density profile produced by the beam were achieved.  相似文献   

7.
Studies on the self-leveling behavior of debris bed are crucial for the assessment of core-disruptive accident (CDA) occurred in sodium-cooled fast reactors (SFR). To clarify this behavior over a comparatively wider range of gas velocities, a series of experiments were performed by injecting nitrogen gas uniformly from a pool bottom. Current experiments were conducted in a cylindrical tank, in which water, nitrogen gas and different kinds of solid particles, simulate the coolant, vapor (generated by coolant boiling) and fuel debris, respectively. Based on the quantitative data obtained (mainly the time variation of bed inclination angle), with the help of dimensional analysis technique, a set of empirical correlations to predict the self-leveling development depending on particle size, particle density and gas injection velocity was proposed and discussed. It was seen that good agreement could be obtained between the calculated and experimental values. Rationality of the correlations was further confirmed through detailed analyses of the effects of experimental parameters such as particle size, particle density, gas flow rate and boiling mode. In order to facilitate future analyses and simulations of CDAs in SFRs, the obtained results in this work will be utilized for the validations of an advanced fast reactor safety analysis code.  相似文献   

8.
Paschen law and equations, which ignore the influence of the Penning ionization on the electron ionization coefficient (α), are always used as the approximation of the breakdown voltage criterion of the Penning gas mixture in current researches of discharge characteristics of the plasma display panel (PDP). It is doubtful that whether their results match the facts. Based on the Townsend gas self-sustaining discharge condition and the chemical kinetics analysis of the Penning gas mixture discharging in PDP, the empirical equation to describe the breakdown of the Penning gas mixture is given. It is used to calculate the breakdown voltage curves of Ne-Xe/MgO and Ne-Ar/MgO in a testing macroscopic discharge cell of AC-PDP. The effective secondary electron emission coefficients (γeff) of the MgO protective layers are derived by comparing the breakdown voltage curves obtained from the empirical equation with the experimental data of breakdown voltages. In comparison with the results calculated by the Paschen law and the equation which ignore the influence of the Penning ionization on α , the results calculated by the empirical equation have better conformity with experimental data. The empirical equation characterizes the breakdown of the Penning gas mixture in PDP effectively, and gives a convenient way to study its breakdown characteristics and the secondary electron emission behaviors.  相似文献   

9.
Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT rejection may rely on the position relation between the two signals. The criteria |△x|≤ 15cm and |△y|≤ 12cm are currently proposed for a rejection rate higher than 90%. For signals coming from distanced bars, the energy conservation relationship can be applied to reject the CT events with a similar performance. In both cases the results of simulation agree very well with the experimental data, assuring their applicability to other detection systems and physics problems.  相似文献   

10.
A three-dimensional particle simulation of ion thruster optics with charge-exchange collision was developed in this study. The simulation code was based on tracking ions using the particle-in-cell method, and the Monte Carlo technique was used to model the charge-exchange collision. Simulations were performed for a 20 cm ion thruster optics. The results were compared with the corresponding experimental data from a test of the ion thruster optics for a duration of 800 hours. The Depth-From-Focus (DFF) method was used to measure the erosion depth of the downstream surface of the accelerator grid. The predicted erosion depth of the accelerator grid was consistent reasonably with the corresponding experimental data. The simulation results showed that the accelerator grid would be burned through after 1333 hours.  相似文献   

11.
This article presents the 2D simulation results of a nanosecond pulsed hollow cathode discharge obtained through a combination of fluid and kinetic models. The spatio-temporal evolution of the electron energy distribution function(EEDF) of the plasma column and electrical characteristics of the nanosecond pulsed hollow cathode discharge at a gas pressure of 5 Torr are studied. The results show that the discharge development starts with the formation of an ionization front at the anode surface. T...  相似文献   

12.
The radial distribution of dose around the path of a heavy ion has been studied by a Monte Carlo transport analysis of the delta rays produced along the track of a heavy ion based on classical binary collision dynamics and a single scattering model for the electron transport process.Result comparisons among this work and semi-empirical expression based delta ray theory of track structure,as well as other Monte Carlo calculations are made for 1,3MeV protons and several heavy ions.The results of the Monte Carlo simulations for energetic heavy ions are in agreement with experimental data and with results of different methods.The characteristic of this Monte Carlo calculation is a simulation of the delta rays theory of track structure.  相似文献   

13.
Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch. By varying both the inter-pulse duration and the pulse frequency, the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure, the gas composition as well as the bias voltage. The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate. The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges. The repetitive nanosecond pulse source is also applied to the generation of large volume, and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.  相似文献   

14.
An accurate critical heat flux(CHF) prediction method is the key factor for realizing the steady-state operation of a water-cooled divertor that works under one-sided high heating flux conditions.An improved CHF prediction method based on Euler's homogeneous model for flow boiling combined with realizable k-ε model for single-phase flow is adopted in this paper in which time relaxation coefficients are corrected by the Hertz-Knudsen formula in order to improve the calculation accuracy of vapor-liquid conversion efficiency under high heating flux conditions.Moreover,local large differences of liquid physical properties due to the extreme nonuniform heating flux on cooling wall along the circumference direction are revised by formula IAPWSIF97.Therefore,this method can improve the calculation accuracy of heat and mass transfer between liquid phase and vapor phase in a CHF prediction simulation of water-cooled divertors under the one-sided high heating condition.An experimental example is simulated based on the improved and the uncorrected methods.The simulation results,such as temperature,void fraction and heat transfer coefficient,are analyzed to achieve the CHF prediction.The results show that the maximum error of CHF based on the improved method is 23.7%,while that of CHF based on uncorrected method is up to 188%,as compared with the experiment results of Ref.[12].Finally,this method is verified by comparison with the experimental data obtained by International Thermonuclear Experimental Reactor(ITER),with a maximum error of 6% only.This method provides an efficient tool for the CHF prediction of water-cooled divertors.  相似文献   

15.
This article presents hydrodynamics simulation of multi-steady states and mode transition by DC-beam-injected gas discharge, and provides a model approach to hysteresis and distinct forms of multi-steady states. The critical transition conditions of the three discharge modes (temperature limited mode, Langmuir mode, and space charge limited mode) are estimated to be dependent on the gas pressure and the filament temperature. Various forms of the multi-steady states in gas discharge can be uniformly explained by the displacement of the mutant positions.The simulation results are in a good agreement with those of the experiments.  相似文献   

16.
Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as tile working gas. Two-dimensional compressible axisymmetric Navier- Stokes (N-S) equations that took into account 11 species and 49 chemical reactions of air, were solved. A heat source model was used to describe the heating phenomenon instead of solving the electromagnetic equations. In the vacuum chamber, a four-temperature model was coupled with N-S equations. Numerical results for tile 10 kW ICP wind tunnel are presented and discussed in detail as a representative case. It was found that the plasma flow in the vacuum chamber tended to be in local thermoehemical equilibrium. To study the influence of operation conditions on the flow field, simulations were carried out for different chamber pressures and/or input powers. The computational results for the above two ICP wind tunnels were compared with corresponding experimental data. The computational and experimental results agree well, therefore the flow fields of ICP wind tunnels can be clearly understood.  相似文献   

17.
A simple one-dimensional numerical model including generation, acceleration and loss effects for runaway electrons are used to deduce the runaway energy εr. The simulation results are presented in a form of a scaling law of εr on plasma parameters. The scaling of εr and therefore the runaway confinement time εr and runaway electron diffusivity Dr have been studied in HL-1M tokamak, by measuring the hard-X ray spectra under different experimental conditions. A tentative explanation for the scaling of obtained data based on the effects from magnetic turbulence is presented.  相似文献   

18.
Based on the idea that a large number of charged particles can be generated by a high-frequency alternating current(AC)dielectric barrier discharge(DBD),and charged particles can be accelerated directionally by a direct current(DC)electric field,a new type of ionic wind formation method is proposed in this paper.To this end,a carbon fiber spiral electrode serves as the generation electrode and a metal rod electrode as the collection electrode,with AC and DC potentials applied respectively to the generation electrode and the collection electrode to form an AC-DC coupled electric field.Under the action of the coupled electric field,a dielectric barrier discharge is formed on the carbon fiber spiral electrode,and the electrons generated by the discharge move from the generation electrode to the collection electrode in the opposite direction of the electric field vectors.During the movement,energy is transferred to the gas molecules by their colliding with neutral gas molecules,thereby forming a directional gas stream movement,i.e.ionic wind.In the research process,it is verified through electric field simulation analysis and discharge experiment that this method can effectively increase the number of charged particles in the discharge process,and the velocity of the ionic wind is nearly doubled.On this basis,the addition of a third electrode forms a distinct discharge region and an electron acceleration region,which further increases its velocity.The experimental result shows that the ionic wind speed reaches up to 2.98 m s^?1.Thanks to the ability of the electrode structure to generate an atmospheric pressure DBD plasma and form an ionic wind,we can create a noise-free air purification device without resorting to a fan,with this device having good application prospects in the field of air purification.  相似文献   

19.
Inactivation cross sections for haploid yeast cell strain 211a have been calculated as 1-ht detector based on the track theory in an extended target mode and a numerical calculation of radial dose distribution.In the calculations,characteristic dose D0 is a fitted parameter which is obtained to be 42Gy,and “radius” of hypothetical target a0 is chosen to be 0.5μm which is about the size of nucleus of yeast cells for obtaining an overall agreement with experimental cross sections.The results of the calculations are in agreement with the experimental data in igh LEF(linear energy transfer)including the thindown region.  相似文献   

20.
A new contact glow discharge electrode employed in this study. Because of the strong field the electrode and the water surface, glow discharge on the surface of water was designed and strength in the small air gap formed by plasmas were generated and used to treat waste water. The electric field distribution of the designed electrode model was simulated by MAXWELL 3D~ simulation software, and the discharge parameters were measured. Through a series of experiments, we investigated the impact of optimal designs, such as the dielectric of the electrode, immersion depths, and curvature radii of the electrode on the generation characteristics of plasmas. In addition, we designed an equipotential multi-electrode configuration to treat a Methyl Violet solution and observe the discoloration effect. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relative low voltage, and the generated plasmas covered a large area and were in stable state. The efficiency of water treatment is improved and optimized with the designed electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号