首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
镎的提取和分离是国际后处理领域重点关注的研究课题之一。在Purex流程中,硝酸肼常被用来作为亚硝酸的清扫剂,此外,由于硝酸肼对Np(VI)和Pu(IV)的氧化还原反应具有选择性,理论上可以利用其反应速率上的差异来实现镎与铀钚的分离。为探索硝酸肼分离镎/钚工艺提供可行性,本文采用单级萃取设备研究了硝酸肼还原反萃Np和Pu的过程。通过研究硝酸浓度、硝酸肼浓度和反应温度对还原反萃过程的影响,确定了Np(VI)和Pu(IV)反萃动力学方程和表现活化能。进一步通过动力学方程得出硝酸肼还原反萃Np(VI)和Pu(IV)的半反应时间,并对Np(VI)/Pu(IV)分离过程的工艺进行了初步探索。  相似文献   

2.
采用磷酸三丁酯(TBP)溶剂萃取法对从辐照镎靶溶解液中提取分离钚的可行性进行了研究。从料液制备、流程设计两个方面研究了Pu(Ⅳ)-Np(Ⅳ)组合作为萃取价态组合的可能性。研究了1,1-二甲基肼(UDMH)还原-亚硝酸钠氧化两步法将镎、钚控制在Pu(Ⅳ)-Np(Ⅳ)的方法。结果表明,99.9%以上Pu(Ⅳ)-99.5%以上Np(Ⅳ)在4 h内能够保持稳定。基于此,设计了从辐照镎靶溶解液中提取分离钚的萃取流程,并用串级实验进行了验证:1A中镎的回收率为99.5%;1B中镎的反萃率为0.8%,钚的反萃率为99.9%;1C中镎的反萃率为99.5%。结果表明,采用Np(Ⅳ)-Pu(Ⅳ)的价态组合进料,基本可实现镎钚的分离,但料液中Np(Ⅳ)-Pu(Ⅳ)价态的长时间稳定性及TBP对Np(Ⅳ)萃取能力弱等问题将影响该工艺的实际应用。  相似文献   

3.
为了解正丁醛在还原反萃分离铀、钚、镎过程中的作用,以正丁醛为还原剂,进行了硝酸水溶液反萃含U(Ⅵ)、Np(Ⅵ)或U(Ⅵ)、Np(Ⅵ)、Pu(Ⅳ)的TBP/煤油中Np的实验研究,测定了串级实验时Np在各萃取器中的分布,讨论了正丁醛、镎、铀、硝酸浓度、相比等对镎在萃取器中分布的影响.单级实验结果表明,正丁醛的加入和延长正丁醛与镎的相互作用时间,有利于从有机相中反萃镎;正丁醛的加入对铀、钚分配比的影响不大;但铀浓度增加会增加镎的反萃.串级实验结果表明,镎在1BP中的比例小于10%;第二级加入正丁醛时,正丁醛和镎在各级的分布较合理,能兼顾镎的去污与反萃.为了减少铀的损失,需要采用较高的硝酸浓度;在1BW中出现少量白色沉淀.  相似文献   

4.
硝酸羟胺还原反萃高浓度钚   总被引:2,自引:0,他引:2  
对硝酸羟胺(HAN)从30%TBP/煤油中还原反萃高浓度Pu(Ⅳ)的影响因素进行了研究。结果表明:延长两相接触时间、降低酸度、升高温度均有利于Pu(Ⅳ)的还原反萃;增大硝酸羟胺浓度虽然也有利于Pu(Ⅳ)的还原反萃,但是当HAN浓度大于0.4mol/L后,反萃率增加不明显;增加肼的浓度也有利于Pu(Ⅳ)的还原反萃,但当肼浓度大于0.2mol/L后,Pu(Ⅳ)的反萃率随肼浓度增加而降低;溶液中硝酸根浓度对Pu(Ⅳ)反萃率的影响明显;随着钚浓度增加,反萃率降低。钚在水相和有机相的分配对HAN还原反萃高浓度钚有显著影响。  相似文献   

5.
镎的主要价态为四、五、六价,三种价态的镎可共存,且可在一定条件下互相转化。不同价态镎的萃取行为不尽相同。随铀钚一同进入1B槽中的镎主要为具有一定萃取能力的Np(Ⅳ)和萃取能力较高的Np(Ⅵ)。在1B槽还原性气氛下,Np(Ⅵ)将被反萃液中的还原剂还原为Np(Ⅴ)甚至Np(Ⅳ),而Np(Ⅴ  相似文献   

6.
特丁基肼(TBH)是一种新型无盐还原剂,能有效还原Np(Ⅵ),而对Pu(Ⅳ)的还原则缓慢。在所有的肼类衍生物中,TBH对Np(Ⅵ)、Pu(Ⅳ)的还原速率差别最大,有望实现Np、Pu有效分离。 本工作利用分光光度法研究了硝酸体系中特丁基肼还原Np(Ⅵ)的动力学。研究了特丁基肼浓度、硝酸浓度、温度对还原速率的影响。实验结果表明,该反应的速率方程可表示为: -dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c(TBH)0.9c(H )-0.75 25℃时,反应速率常数k=5.44(mol/L)-0.15·min-1,反应活化能为61.26kJ/mol。 探讨了离子强度、UO22 浓度、Fe3 浓度对还原速率的影响。结果表明:改变离子强度和  相似文献   

7.
从Np(Ⅴ,Ⅵ)与二甲基羟胺(DMHAN)、单甲基肼(MMH)反应动力学及有机相中Np(Ⅵ)的反萃动力学两方面实验考察了APOR流程1B槽中镎的走向行为。结果表明:DMHAN还原Np(Ⅵ)的速率很快,动力学方程为-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c(DMHAN)/c0.6(H+),25℃时,反应速率常数k=289.8(mol·L-1)-0.4·min-1;进一步还原Np(Ⅴ)的速率则很慢,其中,DMHAN还原Np(Ⅴ)的动力学方程为-dc(Np(Ⅴ))/dt=kc(Np(Ⅴ))c(DMHAN)c(H+),25℃时,k=0.0236(mol·L-1)-2·min-1;MMH还原Np(Ⅴ)的动力学方程为-dc(Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.36(MMH)c(H+),25℃时,k=0.0022(mol·L-1)-1.36·min-1。所以,1B槽中Np主要以Np(Ⅴ)形式存在。在扩散控制模式下,DMHAN和MMH对Np(Ⅵ)的反萃动力学方程分别为:dca(Np(Ⅵ))/dt=k(V/S)co0.,05(Np(Ⅵ)).co-0.14(TBP)ca-0.32(NO3-),25℃时,k=2.29×10-4(mol·L-1)0.96·cm-1·min-1;dca(Np(Ⅵ))/dt=k(V/S)co0.,063(Np(Ⅵ))co-0.27(TBP)ca-0.34(NO3-),25℃时,k=6.24×10-4(mol·L-1)0.98·cm-1·min-1。可见,DMHAN-MMH存在下,Np可被快速反萃入水相。基于以上的动力学参数以及工艺过程参数,可计算出1B槽中95%的Np进入水相。  相似文献   

8.
镎的主要价态为四、五、六价,三种价态的镎可共存,且可在一定条件下互相转化。不同价态镎的萃取行为不尽相同。随铀钚一同进入1B槽中的镎主要为具有一定萃取能力的Np(Ⅳ)和萃取能力较高的Np(Ⅵ)。在1B槽还原性气氛下,Np(Ⅵ)将被反萃液中的还原剂还原为Np(Ⅴ)甚至Np(Ⅳ),而Np(Ⅴ)的萃取能力很弱,基本上不被萃取,所以,Np(Ⅳ)的萃取行为便成了1B槽铀镎分离的关键。基于以上分析,在1B槽铀镎分离串级实验中,初始镎以Np(Ⅳ)形式加入。  相似文献   

9.
N,N-二甲基羟胺对Pu(Ⅳ)的还原反萃和相应的计算机模型   总被引:2,自引:1,他引:1  
研究了N,N-二甲基羟胺(DMHAN)的HNO3溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃行为,考察了N,N-二甲基羟胺浓度、HNO3浓度、温度以及两相接触时间对Pu(Ⅳ)反萃率的影响.结果表明:延长相接触时间能显著提高钚的反萃率;增加HNO3浓度、加大DMHAN的用量、升高温度均能加快钚的反萃速率,但当相接触时间超出一定范围时,这些因素都不能显著增加钚的反萃率.编写了DMHAN单级反萃Pu(Ⅳ)的计算机模拟程序,程序计算值与实验值在一定范围内符合良好.  相似文献   

10.
研究了U(Ⅳ)在分离的有机相(30%TBP-煤油)中、在两相振荡混合和逆流萃取过程中的稳定性。通过单级反萃实验研究了有机相中钚浓度、铀浓度,反萃剂的酸度和肼浓度,U(Ⅳ)用量(M_(u(Ⅳ))/M_(Pu)对钚反萃率的影响。通过串级实验研究了在1B槽工艺条件下,M_(u(Ⅳ))/M_(Pu)和U(Ⅳ)加入位置,反萃剂酸度和相比等条件的变化对铀钚分离的影响。给出了铀和钚的净化系数。  相似文献   

11.
采用紫外可见光谱和气质联用(GC-MS)法研究了二甲基羟胺-甲基肼(DMHAN-MMH)溶液中MMH次级反应中甲醛甲腙的产生过程和性能,并研究了甲醛甲腙对30%TBP-正十二烷中Pu(Ⅳ)的反萃影响。研究表明:久置的DMHAN-MMH硝酸溶液变黄的主要原因是部分甲基肼被空气中的氧气氧化生成甲醛,生成的甲醛再与MMH缩合生成了甲醛甲腙;低温、密闭和避光可以减少DMHAN-MMH硝酸溶液中甲醛甲腙的生成。室温下,低含量(10~(-3) mol/L)的甲醛甲腙对于30%TBP-正十二烷中常量Pu(Ⅳ)的反萃率无明显影响,但对低浓度Pu(Ⅳ)(0.5g/L)的反萃率具有影响,且钚浓度越低其影响越显著。  相似文献   

12.
采用可控温的单级萃取装置,对羟胺还原反萃取钚的工艺条件进行了优化。实验表明,硝酸肼能够将少量Pu(Ⅳ)还原反萃取到水相,但是当硝酸肼浓度较高时,硝酸肼则表现出盐析效应,抑制钚的还原反萃取;对于钚还原反萃取工艺来说,当保持进料中羟胺与钚的摩尔数之比为定值时(在50℃时n (HAN)/ n (Pu)=2~3较为适宜),增大还原剂流量能够提高钚的收率,但同时会降低钚的浓缩倍数;温度升高时,硝酸氧化Pu(Ⅲ)的反应速率加快,使得钚在有机相中的浓度有所升高;当溶液中离子强度较高时,在盐析效应的作用下,Pu(Ⅲ)的分配比随离子强度的提高而升高,导致钚在有机相中的浓度上升。  相似文献   

13.
为开发Pu(Ⅳ)的高选择性萃取剂,实现废液中微量钚的回收,以正十二烷作为稀释剂,研究2,2′-((4-乙氧基-1,2-亚苯基)双(氧基))双(N,N-双(2-乙基己基)乙酰胺)(4-EthoxyBenzoDODA)对U(Ⅵ)、Pu(Ⅳ)的萃取行为,以及两相混合振荡时间、水相硝酸浓度和有机相萃取剂浓度对U(Ⅵ)、Pu(Ⅳ)萃取分配比的影响。硝酸的萃取实验结果表明,4-EthoxyBenzoDODA(KH=0.14)比BenzoDODA(KH=0.44)碱性弱,更有利于选择萃取离子势较强的Pu(Ⅳ)。对U(Ⅵ)、Pu(Ⅳ)的萃取实验表明,Pu(Ⅳ)对U(Ⅵ)的分离因子最高可达6.9,Pu(Ⅳ)对Eu(Ⅲ)的分离因子最高可达223。采用斜率法分析了4.0 mol/L HNO3浓度下U(Ⅵ)萃合物的组成,主要为UO2(NO3)2·L)、Pu(Ⅳ)(Pu(NO3)4·L和Pu(NO3)4·L2共存。使用硝酸肼或者硝酸羟胺等还原反萃剂,可以将负载有机相中98%的Pu反萃至水相中。结果表明,4-EthoxyBenzoDODA对Pu(Ⅳ)具有一定的选择性。  相似文献   

14.
对磷酸三异戊酯(TiAP)和磷酸三丁酯(TBP)萃取体系的物理性质、萃取能力、耐辐照等方面进行了比较,结果表明,TiAP作为萃取剂在物理性质、萃取Pu(Ⅳ)和Np(Ⅳ)的能力以及辐照稳定性能等方面明显好于TBP。提出TiAP是一种很好的并有可能用于锕系元素提取分离的萃取剂。  相似文献   

15.
在后处理流程的众多化学分离中 ,Np的走向和控制是国际后处理界关注的重点研究课题。根据我国和其他国家的研究成果 ,综合分析了后处理中Np的走向和控制。Np在辐照燃料溶解液中的价态分布主要取决于溶解液中HNO3与HNO2 之比 ,通常情况下 ,溶解液中Np(Ⅴ )占主要份额 ;Np在共去污阶段的走向有两种可能 ,一是将Np控制为Np(Ⅴ ) ,使其进入高放废液 (1AW ) ,二是将Np控制为Np(Ⅵ ) ,则Np将与U ,Pu一起进入有机相 ,但两者至今为止都难以实现定量分离。Np在U/Pu分离阶段部分随U ,部分随Pu。在U纯化循环中 ,理想的方法是采用低酸加热氧化Np(Ⅳ )至Np(Ⅴ ) ,以实现与铀的有效分离。  相似文献   

16.
在HNO3-U(Ⅳ)-N2H4-Tc(Ⅶ)-Np(Ⅴ)体系中,Np(Ⅴ)迅速还原为Np(Ⅳ)。对比研究表明,Tc是该体系中Np(Ⅴ)迅速还原的主要原因。该体系中的主要反应是U(Ⅳ)将Tc(Ⅶ)还原为Tc(Ⅳ),进而Tc(Ⅳ)将Np(Ⅴ)还原为Np(Ⅳ)。本文通过串级和台架实验研究了该体系中锝对镎走向的影响。结果表明,Np(Ⅴ)的还原速度随HNO3浓度、初始Tc浓度的增大和温度的升高而加快。在模拟Purex流程铀钚分离工艺的条件下,试管串级和微型混合澄清槽台架实验结果表明,提高1AP料液中Tc(Ⅶ)的浓度、升高反应温度,Np进入1BU中的百分含量增加。  相似文献   

17.
在制备并稳定Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的基础上,研究了它们在稀TBP/煤油与水相间的分配。考察了25℃下5%TBP/煤油萃取时硝酸浓度、硝酸铝浓度、六价铀浓度对3种价态镎萃取分配的影响,并考察了TBP浓度对它们的萃取影响。25℃下,Np(Ⅳ,Ⅴ,Ⅵ)的萃取反应方程及表观平衡常数分别为Np  相似文献   

18.
为了测定U(Ⅳ)和硝酸肼共存时U(Ⅳ)和硝酸肼的含量,用重铬酸钾和邻菲咯啉分别作U(Ⅳ)的氧化滴定剂和指示剂,溴代丁二酰亚胺(RNBr)和甲基红分别作硝酸肼的氧化滴定剂和指示剂。在硝酸介质中,对同一样品,通过调节硝酸浓度,先后测定了U(Ⅳ)和硝酸肼的含量。测定结果表明,U(Ⅳ)的质量浓度在5.5~205mg/mL范围内,精密度优于2.0%;硝酸肼浓度在0.05~1.0mol/L范围内,精密度优于2.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号