首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
利用差示扫描量热仪、场发射电子探针和激光共聚焦显微镜研究了22MnB5热冲压钢奥氏体化过程中Al-Si镀层的组织演化。镀层板升温过程中,Al-Si镀层在570 ℃左右熔化;由于温度较低,Al、Fe、Si原子的扩散受到Fe2SiAl7阻挡。当温度升到610 ℃左右时,扩散到镀层的Al原子增多,使得Fe2Al5进一步生长;Si原子向基体和镀层外表面扩散,由于Fe2Al5溶解Si原子能力弱,因此在Fe2Al5晶界处形成一层沉淀物FeSiAl2,其余的Si原子就扩散在镀层表面形成Fe2SiAl7。750 ℃时,Al原子扩散到基体中形成了Fe3Al;镀层中的Fe原子增加使Fe2Al5和FeAl2不断生长;由于Fe2Al5和FeAl2相中Si原子的溶解度低,因此会在晶界处形成Fe3SiAl5沉淀物;与Fe2Al5、Fe3SiAl5、Fe3Al相比,FeAl2相的生长速度更快,所占Al-Si镀层整体体积最大,这是因为FeAl2正交晶格中沿c轴的高空位率(30%)导致了FeAl2相的生长动力学更强。  相似文献   

2.
以38CrMo合金钢和Al-Si-Cu-Mg高强铸造铝合金为原料进行固−液复层铸造。在720℃下进行了5~20 min不同时间热浸镀纯Al、Al-Si合金实验,制备出界面冶金结合良好的钢/铝复层材料。研究热浸镀时间、热浸镀成分对钢/铝界面显微组织和力学性能的影响。结果表明:热浸镀纯Al时,界面金属间化合物为Fe_(2)Al_(5)和FeAl_(3);热浸镀Al-Si合金时,界面金属间化合物为Fe_(2)Al_(5)和Al_(8)Fe_(2)Si。热浸镀纯Al、Al-Si合金界面显微硬度最高分别为535.2 HV和580.6 HV,剪切强度最大分别为28.4 MPa和39.4 MPa。热浸镀时间相同时,热浸镀纯Al形成的金属间化合物层厚度大于热浸镀Al-Si合金形成的金属间化合物层厚度,主要原因是Si元素的存在降低了Fe、Al原子的扩散系数,阻碍了Fe、Al原子之间的扩散,使金属间化合物层的生长受到抑制。  相似文献   

3.
钢丝双浸镀Galfan合金涂覆层的显微组织   总被引:1,自引:0,他引:1  
相同条件下,采用双浸镀工艺制备3种不同规格的Galfan(Zn-5%Al-RE)合金涂覆层钢丝试样,采用扫描电镜、背散射电子、能谱仪研究了基体表面腐蚀形貌和涂覆层组织。结果表明,随浸锌时间从8.0 s增加到14.9 s,基体表面腐蚀由点状腐蚀转变为片状腐蚀;涂覆层组织由里及表可分为3层:界面层为FeAl3与Fe2Al5Znχ(χ<2)的混合组织,内层合金层为Fe2Al5Znχ(χ≥2)化合物,外层合金层为Zn-5%Al共晶组织。  相似文献   

4.
利用SEM观察了22Mn B5钢在900℃不同奥氏体化时间下,热镀Al-10%Si(质量分数)镀层的微观组织变化情况,利用EDS和GD-OES分析了奥氏体化后热镀Al-10%Si镀层的元素分布。结果表明,22Mn B5钢奥氏体化前,热镀Al-10%Si镀层主要由纯Al、纯Si和二者共晶反应形成的金属间化合物Fe_2SiAl_7组成,在Fe_2SiAl_7和钢基体之间存在一层薄薄的由Fe2Al5和FeAl_3组成的化合物层。900℃奥氏体化后,热镀Al-10%Si镀层中的三元共晶相Al+Si+t6逐渐转变为三元Al-Fe-Si或二元Fe-Al金属间化合物。奥氏体化时间为2 min时,镀层由Fe_2SiAl_7、Fe_2Al_5和FeAl_2组成;奥氏体化时间为5 min时,镀层由FeAl_2、Fe_2SiAl_2和Fe_5SiAl_4组成;奥氏体化时间为8 min时,镀层由FeAl_2和Fe5Si Al4组成。由于Fe_2SiAl_2和镀层/钢基体界面扩散层中Al原子的扩散系数远大于Fe原子,导致从镀层向钢基体晶界及晶粒内扩散并与之反应所消耗Al原子的量远大于从钢基体扩散到镀层中的Fe原子量,从钢基体中流入到镀层中的空位数量远大于从镀层中流入到钢基体中的空位数量。原子的不平衡扩散及镀层/钢基体界面空位数量的富余使得扩散反应层与镀层的交界区域形成了Kirkendall空洞。22MnB5钢奥氏体化时,热镀Al-10%Si镀层表面形成一层稳定的Al_2O_3氧化膜,镀层的高温氧化现象非常有限,热镀Al-10%Si镀层可以作为22MnB5钢热成形时的保护层。但热镀Al-10%Si镀层扩散过程中产生的脆性金属间化合物因高温塑性不足而导致镀层中产生大量垂直于镀层/钢基体界面并贯穿整个镀层的微裂纹,从而影响镀层的防护性能。  相似文献   

5.
采用热浸镀方法在Ti6Al4V合金表面制备Ti-Al镀层,并在1100 ℃高温下进行热扩散处理。结果表明,TC4合金热浸镀铝后在1100 ℃保温,形成了表面氧化层、过渡层及基体,表面氧化层和过渡层厚度随扩散时间延长而增加,表面氧化层主要由Al2O3和TiO2构成,过渡层主要相为TiAl3、Ti2Al5和Ti19Al6金属间化合物。  相似文献   

6.
铝合金/镀锌钢板脉冲MIG电弧熔-钎焊接头组织与性能   总被引:1,自引:0,他引:1  
采用数字化脉冲MIG焊机,以ER4043焊丝为填充材料.实现了6013-T4铝合金薄板与镀锌钢板的熔-钎焊接,研究了焊接热输入对接头组织和性能的影响,结果表明,在熔-钎焊接头熔化焊缝焊趾处存在主要由Zn-Al共晶体、富A1的α固溶体和Fe3Al组成的富Zn区:钎焊界面上的Fe-Al金属间化合物层厚度在1.05-4.50μm之间.且随焊接热输入的增加而增大.Fe-Al金属间化合物呈"锯齿"或"舌"状向焊缝内生长,主要为FeAl2,Fe2Al5和Fe4Al13.随着焊接热输入的增大,熔-钎焊接头的抗拉强度先增大而后减小.在850 J/cm的热输入下达到229 MPa,拉伸后在铝合金焊接热影响区发生断裂,为塑韧性断裂;当焊接热输入较小时接头在钎焊界面断裂,属于脆性断裂.  相似文献   

7.
崔庆龙 《焊接学报》2016,37(10):125-128
钛合金板坡口位置预先热浸镀纯铝镀层,采用TIG电弧熔钎焊的方法连接镀层钛合金与铝合金,对比分析了有镀层和无镀层条件下形成的接头界面组织及焊缝强度.结果表明,两种条件下界面处生成相同成分的金属间化合物TiAl3,其中无镀层条件下Ti/Al界面反应层呈锯齿状,厚度4~6 μm,焊缝平均拉伸强度118 MPa,以脆性断裂为主;镀层条件下界面生成均匀稳定金属间化合物,厚度2 μm以下,焊缝平均拉伸强度205 MPa,以韧性断裂为主.镀层的引入减薄了金属间化合物反应层厚度,从根本上改变了接头的断裂的方式.  相似文献   

8.
通过扫描电镜、能谱分析和X射线衍射等方法研究了火焰钎焊时Zn-xAl钎料的润湿性能、铝/钢钎焊接头界面显微组织、金属间化合物层以及接头抗剪强度.结果表明,Zn-xAl钎料配合改性CsF-RbF-AlF3钎剂,可以有效地去除母材表面氧化膜,从而提高钎焊接头力学性能.随着Al元素含量增加,钎料铺展性和填缝性随之提高,但是钎焊接头强度先升后降,Al元素含量为15%时,钎焊接头力学性能最佳.钎焊接头显微组织分析结果表明,金属间化合物主要为Fe4Al13相. Zn-xAl钎料中Al元素含量较低时,界面层由富锌相和Fe4Al13相组成.随着Al元素含量的增加,在Zn-25Al钎焊接头界面出现第二层金属间化合物Fe2Al5相.  相似文献   

9.
在保持固态条件下,分别变化加热温度、时间对铝/Q235钢爆炸焊接头进行加热处理.分析了接合界面区反应层形貌等微观特征,探讨了加热温度、加热时间对反应层厚度的影响,研究了接合界面金属间化合物的生长行为.界面反应物是由靠近铝合金侧的反应物为Fe4Al13和靠近钢侧反应物为Fe2Al5构成.金属间化合物层随着加热时间的延长而变厚.结果表明,金属间化合物的生长满足抛物线法则,其生长激活能为33.26 kJ/mol.  相似文献   

10.
采用热浸镀铝合金工艺在不锈钢上制备铝基隔离防护界面,再将含热浸镀铝合金层的不锈钢骨架与AZ91镁合金镶嵌铸造成形,并研究钢/铝界面和镁/铝/钢界面形貌、界面反应生长机理和界面元素扩散行为。结果表明,不锈钢骨架与热浸镀铝合金形成紧密冶金结合界面,界面生长由Al、Fe元素在化合物层上相互扩散反应控制;AZ91镁合金与浸镀铝不锈钢骨架形成良好的冶金结合,并形成了由Al、Mg金属在界面处熔化与扩散反应控制的复杂界面结构;镁合金与不锈钢之间未发生元素相互扩散,实现了镁合金与不锈钢之间的物理隔离效果。  相似文献   

11.
文中提出了一种激光-TIG复合热源熔钎焊新方法,实现了铝合金与碳钢的对接熔钎焊,并研究了焊接工艺对接头特性的影响.采用扫描电镜(SEM)、能谱分析(EDS)和电子材料试验机对接头显微结构与力学性能进行研究.结果表明,接头最大抗拉强度为83.6 MPa,断裂发生在钢/焊缝界面,断裂形式为脆性断裂.钢/焊缝界面不同位置处界面层厚度不同,在3~12 μm之间.界面层由两部分组成,即靠近钢一侧为η-Fe2Al5,靠近焊缝一侧为τ5-Al7.2Fe2Si;远离界面层的焊缝区主要由α-Al基体和Al-Si共晶相组成.  相似文献   

12.
王志平  靳朋礼  贾鹏  杨斯楠 《焊接学报》2018,39(10):103-107
采用CMT搭接方法研究不同送丝位置对6082铝合金/镀锌板搭接接头质量的影响. 使用金相显微镜、扫描电镜(SEM)、能谱仪(EDS)分析焊接接头的形貌,微观组织及元素分布;通过拉伸试验检测接头的力学性能. 结果表明,1和2位置时,焊缝成形不饱满,锌层蒸发严重,界面处形成FeAl2,FeAl及FeAl3的金属间化合物,承载力达到6 kN;当3,4和5位置时送丝位置指向铝板,焊缝成形饱满,界面处形成Fe6.6Al3Zn0.2和Fe2Al3Si0.3,厚度约为2 μm,承载力达到7.5 kN,综上所述,CMT焊接铝合金/镀锌板时送丝位置应偏向铝板,可得到综合性能更好的焊接接头.  相似文献   

13.
为了解决传统焊接方法焊接铝合金与低碳钢异种金属的焊接接头性能低下的问题,对低碳钢(steel plate cold rolled commercial,SPCC)与铝合金(A5052-H34)异种金属进行了激光-压轮焊接试验,并确定了最佳的焊接工艺参数.利用激光显微镜、电子探针显微分析仪(EPMA)硬度测试仪、拉伸试验机测试了焊接接头的微观组织和力学性能.结果表明,在接合界面处金属间化合物由具有一定塑性的金属间化合物和完全脆性的金属间化合物组成;接合界面处的金属间化合物的带宽约为8~10μm,此时焊接接头的抗剪强度达到最大值(210 MPa);而具有一定塑性的金属间化合物带宽基本保持不变,约为1.8μm.  相似文献   

14.
将未处理H13钢、热反应扩散(TRD)法渗铬试样及铬硼复合渗(TRD渗铬+TRD渗硼)试样浸入熔融铝液进行热浸铝试验。对渗铝试样截面进行显微观察及渗铝层定点成分分析。结果表明:相同热浸铝条件下,单一碳化铬覆层的浸铝层厚度与未处理H13钢相当,即单独渗铬并不能提升H13钢抗铝液侵蚀能力。而硼铬复合处理试样浸铝层厚度为单一碳化铬覆层的67%,渗硼处理的应用能够有效提高TRD碳化铬覆层抗铝液侵蚀能力。试样经热浸铝后渗铝层Fe-Al金属间化合物成分主要为Fe2Al5。  相似文献   

15.
针对铝-钢异种金属焊接缺陷多、效率低等问题,提出一种堆焊-搅拌摩擦复合焊接方法,即采用旁路分流电弧焊先在钢板上堆敷铝合金,再采用搅拌摩擦焊进行铝合金堆敷层和铝合金母材的搭接焊,得到在铝-铝界面呈现典型搅拌摩擦焊“洋葱圆环”状结合的铝-铝-钢复合过渡接头. 针对典型焊缝进行铝-钢异种金属接头的组织结构分析.结果表明,搅拌摩擦焊可以有效消除铝合金堆敷层中存在的气孔等缺陷,并实现金属界面层的减薄. 对铝钢结合界面进行EDS扫描,在堆敷铝合金侧可以观察到呈树枝状的Fe相扩散和呈网状的不均匀Si相扩散,结合XRD(X-ray diffraction)分析其主要成分为Al5Fe2Zn0.4和Al7Fe3Si0.3. 对接头试样进行拉伸试验,拉伸接头断裂在铝合金母材处,达到铝合金母材强度的100%,符合接头应用的力学指标.  相似文献   

16.
5A06铝合金厚板双丝PMIG焊接头组织与性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用双丝PMIG协同式高效焊接方法对板厚为60 mm的5A06铝合金进行了焊接试验,获得了优良的焊接接头,并对焊接接头进行了金相组织和力学性能分析. 结果表明,母材保持轧制态纤维状组织,焊缝组织细密均匀,主要为α(Al),β(Mg2Al3)及部分Mg2Si杂质相. 接头平均抗拉强度和断后伸长率分别为306.17 MPa和11.93%,达到母材的90.5%和61.5%. 对比接头各层显微组织和力学性能发现,热输入影响焊接接头热影响区宽度和力学性能. 在焊接热输入最小的正面盖面层,焊缝组织更细,热影响区宽度更窄,试样力学性能更好.  相似文献   

17.
几种铝钢异种金属熔钎焊工艺的对比与分析   总被引:4,自引:3,他引:1       下载免费PDF全文
采用脉冲旁路耦合电弧MIG焊、CMT及激光焊方法实现铝/镀锌钢板搭接焊,对焊缝界面微观组织、形貌及元素成分进行了观察分析,并测试了其力学性能.结果表明,三种焊接方法均可以实现铝/镀锌钢板异种金属的优质连接,获得成形良好的焊缝,搭接接头的抗拉剪强度均可以达到铝合金母材的80%以上,拉伸试样断裂在焊缝铝合金母材热影响区.当母材热输入及工艺合适时,三种方法下搭接接头界面处均形成一主要成分为Fe2Al5和FeAl3,平均厚度约为8 μm的金属间化合物,而且控制金属间化合物的生成是获得铝/钢焊接优质接头的关键.  相似文献   

18.
铝合金/镀锌钢异种材料薄板的超声波点焊   总被引:1,自引:1,他引:0       下载免费PDF全文
为了实现铝合金和钢板的高效连接,对3003铝合金和镀锌钢板进行了超声波点焊. 研究了接头的显微组织特征、焊接参数对接头性能的影响以及焊缝区的温度变化过程. 结果表明,超声波焊接可以对3003铝合金与镀锌钢板进行有效连接;镀锌层被不规则挤出,铝合金与钢直接接触区形成了FeAl3和Fe2Al5相;在一定范围内,随着焊接时间的增加,接头抗拉强度先增加后减小,其减小的原因是过长的焊接时间诱导显微组织演变;当焊接时间为240 ms,焊接压力为0.4 MPa时,获得接头的最大抗拉力为673.05 N;在文中试验条件下,焊接区最高温度达到390 ℃.  相似文献   

19.
采用冷金属过渡技术(CMT)对不锈钢表面进行毛化,在其表面制备高度为3 mm、分布密度为9个/cm2的毛刺,毛刺中心横向及纵向间距均为3 mm. 研究其与纯铝进行真空扩散连接接头的界面组织和性能,分析不同保温时间对接头组织和性能的变化规律. 结果表明,在扩散连接温度为600 ℃,保温时间为60 min,压力为3 MPa的工艺条件下,表面毛刺刺入铝母材内部,使得表面氧化膜有效去除,接头形成连续的Fe2Al5+FeAl3界面反应层,相比不锈钢与纯铝的直接真空扩散连接,接头拉剪强度显著提高. 此外,在扩散连接温度一定时,随保温时间的增加,反应层厚度增加,接头拉剪强度呈现先增大后减小的变化趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号