首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
以自制的煤基电极材料为阴阳极,采用电吸附技术处理氰化废水,主要研究了外加电压对电吸附处理氰化提金废水的影响,测定了煤基电极材料的循环伏安曲线,并用扫描电子显微镜(SEM)、能谱分析(EDS)对吸附后的电极片进行分析表征。研究表明,外加电压对电吸附过程的影响显著,外加电压越大,离子的去除率越大。开路状态下仅发生离子的吸附现象,反应5 h后铜离子和总氰的去除率为14.60%,10.50%;当外加电压为0.4 V时,各离子在电场作用下发生定向迁移,富集于电极的双电层上,该过程主要发生离子的定向迁移及电吸附现象,各离子吸附顺序依次为Cu(CN)3-4,Zn(CN)2-4,Cu(CN)2-3,CN-,SCN-,5 h后铜离子和总氰的去除率为19.93%,22.53%;当外加电压2.0 V时,溶液中离子在定向迁移、电吸附与富集沉淀的共同作用下,5 h后铜离子及总氰的去除率可达到88.49%,75.17%,在此过程中阳极附近产生硫氰酸铜等絮状沉淀物。  相似文献   

2.
采用沉淀—电吸附联合工艺处理高铜高铁提金氰化废水,对处理过程的反应原理和工艺流程进行了系统的分析说明,同时对关键处理结果进行了讨论。研究表明,采用沉淀—电吸附联合工艺处理高浓度氰化提金废水是可行的。经Zn SO4沉淀处理后,废水中Fe2+、Cu2+及游离CN-的沉淀率分别达到100%、85.89%和99.43%。电吸附处理后,废水中的Cu2+、SCN-与游离CN-的去除率分别为98.68%、43.60%和99.57%。经X射线衍射(XRD)分析表明,硫酸锌沉淀后的沉淀物主要由Zn2[Fe(CN)6]、Zn(CN)2和Cu CN组成,而电吸附处理后得到的沉淀物90%以上为Cu SCN,沉淀物及饱和阳极板可经综合处理回收氰化物与金属,同时废水可返回浸出系统循环利用。  相似文献   

3.
通过铁和铝电极材料的对比,选择铝极板作为电极材料,研究极板间距、电流密度、反应时间及废水pH对电絮凝法处理酸性矿山废水的影响。结果表明,当废水中Fe2+、Cu2+和Zn2+的初始质量浓度分别为295.1、18.3、8.2 mg/L时,极板间距10 mm、电流密度20 mA/cm2、废水pH=5.0的条件下,反应40 min后,Fe2+、Cu2+和Zn2+的去除效率分别达到了90.8%、96.5%和96.8%,反应后废水的pH可达到6.7。在单因素试验的基础上,以电絮凝中Fe2+、Cu2+和Zn2+的去除率的最大值,以及出水pH最大值为评价指标,通过响应曲面法建立模型分析拟合得出优化条件并重复3次试验加以验证。结果表明,在电流密度21 mA/cm2、反应时间35 min、极板间距10 mm时,对Fe2+、Cu2+和Zn2+的平均去除率分别为87.02%、93.91%和94.63%,平均pH为6.13,该模型能够较好预测电絮凝对酸性矿山废水的处理效果。絮凝体SEM-EDS检测分析证明Fe、Cu、Zn等重金属可有效从废水中去除。  相似文献   

4.
以自制的煤基材料为电极,采用电化学法深度处理贵金属贫液,研究了电压、时间、pH值及温度等因素对各离子去除率的影响规律,采用扫描电镜及能谱(SEM-EDS)对反应后极板的表面形貌及负载物组成进行表征分析。实验结果表明,随着处理时间的延长,温度的增加,溶液中各离子的去除率逐渐增大,随着电压增大离子去除率表现为先升后降的趋势,在1.6 V时达到最佳,而pH值的升高不利于反应进行。选用原液pH值,在电压为1.6 V、溶液温度为50 ℃、处理时间为6 h的条件下,钯离子去除率为99.32%,铂离子去除率为97.13%,金与钌离子可视为完全去除。研究证实,采用电化学法可以对低浓度贵金属贫液进行深度处理并实现回收贵金属的目的,该电化学反应由电沉积和电吸附两方面共同作用,且前者占主导作用。  相似文献   

5.
采用光催化与电化学氧化相结合技术对兰炭废水进行降解试验。用石墨片和活性炭颗粒为三维电极材料,外加紫外光灯条件下分别考察外加电压、活性炭颗粒投加量、电解质浓度和二氧化钛光催化剂(P25)投加量等对纯苯酚溶液中苯酚和COD去除率的影响。结果表明,当外加电压10V、活性炭颗粒投加量8g、电解质浓度0.15mol/L、P25投加量0.6g时,1 000mg/L的苯酚溶液中3h时苯酚和COD的去除率分别达到81.11%和73.64%;以此工艺条件,对某兰炭企业产生的兰炭废水(COD32 700mg/L)进行降解试验,COD去除率为60.63%。  相似文献   

6.
为厘清铜电沉积过程中枝晶生长规律,探讨了各因素如有无添加剂(盐酸、十二烷基硫酸钠和明胶)、电压、Cu2+浓度等对铜面电极电沉积过程中枝晶生长的影响。结果表明,无添加剂时,增大电压和Cu2+浓度,都有利于增加铜枝晶数量;高电压,尤其是电压为25 V时,铜枝晶现象十分显著。盐酸能促进铜枝晶分形,而十二烷基硫酸钠、明胶可以抑制铜枝晶生长现象。  相似文献   

7.
在含有离子液体[BMIm]PF6、[PMIm]PF6和[C6MIm]PF6的介质中,通过还原Cu2+制备铜纳米粒子.通过TEM和XRD分析,对比研究了Cu2+浓度、还原剂种类以及离子液体[BMIm]PF6、[PMIm]PF6和[C6MIm]PF6对所制备的铜纳米粒子的粒径和形貌的影响.结果表明:Cu2+浓度对铜纳米粒子的粒径和形貌没有明显的影响;离子液体的类型对铜纳米粒子的粒径也没有明显的影响,但对形貌有一定的影响;还原剂对铜纳米粒子的粒径及形貌影响较大.  相似文献   

8.
采用硫酸锌沉淀工艺处理某黄金冶炼厂的高铜氰化提金废水,考察了沉淀剂用量、沉淀时间及沉淀温度对各离子沉淀率的影响,采用X射线衍射(XRD)分析对沉淀物进行分析表征,并对沉淀过程进行了理论分析和计算。研究表明,沉淀时间和温度对沉淀效果影响不大,而硫酸锌用量的影响较为显著。随着硫酸锌用量的增加,废水中游离氰与Cu离子浓度逐渐减小,Zn离子浓度逐渐增加。在100 ml氰化废水加入3.5 g Zn SO4,常温搅拌40 min的条件下,Fe,Cu离子及游离氰的沉淀率分别可达到100%,86%和99.34%。沉淀过程溶液中金基本没有损失,处理后的废水可在调节p H值后直接返回浸出系统循环利用。XRD分析表明,硫酸锌用量对沉淀物的组成没有影响,沉淀物组分主要为Zn2[Fe(CN)6],Zn(CN)2和Cu CN,可进一步通过化学方法处理综合回收金属铜、锌与游离CN-。理论计算表明,溶液中游离的CN-,Fe及Cu离子沉淀的极限浓度分别为3.83×10-3,1.56×10-13和2.37 mg·L-1,而处理后废水中的离子实际浓度要高于理论极限浓度,离子的沉淀次序依次为Zn离子、Fe离子、游离CN-和Cu离子。  相似文献   

9.
运用FLUENT对电袋除尘器电场区域内流场、电晕电场、荷电粒子运动轨迹进行数值模拟,确定静电区捕集粉尘的最小粒径,优化静电区集尘板的最佳开孔范围.首先数值模拟了电袋除尘器静电区的流场分布和电场分布,在此基础上,分别数值模拟了粒径为0.5、1.5和2.5μm的粒子在外加电压为45 k V的电场中的运动轨迹和速度分布,并进行了数值分析.模拟结果表明:在该除尘器结构及模拟条件下,除尘器静电区通道内最小捕集粒径为1.5μm;在静电区通道内集尘板X方向的最佳开孔范围是0.324~1.25 m.研究结果为电袋除尘器静电区内结构的设计和优化提供理论参考.  相似文献   

10.
实验室对富镁纤维状硅酸盐黏土进行酸改性和钾盐活化处理,并与聚合羟基铁离子进行聚合反应,制备了一种新型黏土复合絮凝剂.对重金属离子Zn2+的吸附性能试验结果表明:pH值对复合絮凝剂吸附Zn2+影响很大,当pH<2时,Zn2+去除率只有20%左右,当pH>6时,Zn2+去除率达到95%;初始浓度对Zn2+的去除率影响较大,去除率随着初始浓度的上升而下降;而温度、絮凝剂投加量对Zn2+去除率影响相对较小.改性后黏土矿物对Zn2+有较强的去除能力,常温下,当pH为6~8、投加量为0.3 g、500 r/min转速条件下快速搅拌5 min、100 r/min转速条件下慢速搅拌10 min、静置60 min时,Zn2+的去除率可达95%,该方法工艺简单且无二次污染.  相似文献   

11.
二价铜盐沉淀-树脂吸附处理氰化提金废水的研究   总被引:2,自引:0,他引:2  
采用沉淀一离子交换联合工艺处理氰化提金废水,重点考察了CuSO4·5H2O用量及沉淀时间对各种离子沉淀率的影响,以及树脂的用量及吸附时间对各种离子综合去除率的影响。试验结果表明,当取CuSO4·5H2O理论用量的1.5倍、沉淀时间为60min时,CN^-、Fe、Zn离子沉淀率均可述到93%以上,而Cu离子沉淀率为50%左右。XRD分析表明,沉淀物主要由zn2[Fe(CN)6]、Cu2[Fe(CN)6]、CuCN及Zn(OH)2组成。吸附试验表明,当201×7树脂用量为5mL、废水体积为100mL、常温吸附75min时,氰化提金废水中CN^-及Cu、Fe、Zn离子的综合去除率分别可达到99.94%、71.23%、100%和99.95%,处理后废水中游离氰及铁、锌质量浓度达到了《GB8978-1996污水综合排放标准》一级排放指标。  相似文献   

12.
考察了废水初始pH值、不同阳离子、阴离子、有机物、共存重金属离子、极端条件等因素对吸附Zn2的影响.结果表明,8h后吸附接近饱和,废水初始pH =6时处理效果最好,Zn2+吸附容量为3.98 mg/g,去除率为79.6%;Na+、K+、Mg2+、Ca2+均会抑制Zn2的吸附,影响顺序从小到大为Na+<K+< Mg2+< Ca2+;Cl-、SO2-4对吸附Zn2+抑制作用很小,且Cl-的抑制作用小于SO2-4;COD对吸附Zn2+有促进作用;Pb2+、Cu2+共存时,对Zn2+的吸附有抑制作用,影响顺序为Pb2+单元体系< Cu2+单元体系< Pb2+、Cu2+二元体系;高盐和强酸对Zn2+的吸附有较大影响,但高温基本无影响.饱和吸附材料的后处理试验表明,在550℃马弗炉中热处理6.5h,烧失率为75.4%,烧渣中Zn2+含量为1.75%,与热处理前相比,富集倍数为4.1倍.本文研究成果为吸附法处理含锌重金属废水并回收废水中的重金属提供了重要依据.  相似文献   

13.
采用混凝和电絮凝工艺去除废水中的多种金属离子(Pb^2+、Cd^2+、Cu^2+、Ni^2+),研究混凝反应主要影响因素液相pH、混凝剂(PAC)投加量对各金属离子去除效率的影响,探讨废水pH、施加电流密度对各金属离子电絮凝去除效率的影响,阐明混凝和电絮凝多金属协同沉淀去除的机制。结果表明,PAC混凝去除废水中Pb^2+、Cd^2+、Cu^2+、Ni^2+的最佳pH为7.0,最佳投加量600mg/L,Pb^2+、Cu^2+去除效率远高于Cd2+、Ni2+;电絮凝反应金属离子去除的最佳pH为7.0,最佳电流密度为1.2~1.8mA/cm^2。混凝与电絮凝金属离子的去除效率与金属离子的半径、相对分子质量大小无关,而与金属离子的溶度积直接相关,金属离子的溶度积越低,混凝和电絮凝去除效率越高。电絮凝较混凝反应具有更高的金属离子去除效率。研究结果对于采用混凝和电絮凝工艺处理多金属污染废水具有借鉴和指导意义。  相似文献   

14.
王文才  黄万抚  蔡嗣经 《黄金》2005,26(2):45-47
在实验的基础上,研究了乳化液膜处理含CU^2 废水时的低压静电破乳法、脉冲高压静电破乳法以及旋流脉冲高压静电破乳法。研究结果表明,低压静电破乳时,只有破乳电压超过250V以后才有较好的破乳效果,电压越大破乳速度越快;旋流脉冲高压静电破乳法和脉冲高压静电破乳法均能有效地对提取Cu^2 的乳化液膜体系进行破乳,且前者的破乳效果要比后者好。  相似文献   

15.
陈鹏  胡绍伟  王飞  刘芳  王永  徐伟 《钢铁》2015,50(12):38-41
 以高级氧化技术处理后的焦化废水为研究对象,用焦化厂干熄焦焦粉作为吸附剂,对焦粉吸附深度处理焦化废水高级氧化出水的方法进行了研究,考察影响吸附的因素如焦粉粒径、投加量、废水pH值、吸附时间等对焦化废水COD去除率和色度的影响。试验结果表明,当焦粉粒径为0.16 mm、1 L水中投加焦粉80 g、废水pH值为4、焦粉吸附时间为2 h,最终出水的COD去除率为37.4%,色度由进水的48倍降到23倍,工艺出水水质稳定,水质可以达到《辽宁省地方排放标准》(DB 21/1627—2008)的要求,为焦化废水的达标排放提供了一条技术可行、经济合理的新途径。  相似文献   

16.
聚丙烯基阴离子交换纤维吸附过程研究   总被引:1,自引:0,他引:1  
研究了聚丙烯基阴离子交换纤维在含氰废水中的吸附,结果表明:离子交换无纺布的吸附容量与接枝率有关,接枝率越高吸附量越大。离子交换无纺布对氰化物及Cu,Fe,Zn离子的吸附容量较大。对氰化物及Cu,Fe,Zn的最大吸附量条件是:pH在11.8左右、室温(20士2℃)、吸附时间20~30 min。  相似文献   

17.
在炉渣基固化/稳定化重金属土壤的基础上,以高炉渣为主要材料,通过掺入不同比例的激发剂和石灰石粉,研制了炉渣基重金属废水净化材料.试验原废水中Cd2+、Cr3+、Pb2+和Zn2+的浓度分别为10 mg/L、10 mg/L、20 mg/L和50 mg/L,以重金属去除率为评价指标.结果表明,在高炉渣、激发剂和石灰石粉的质量比为55:10:35,材料总添加量为6 g/L时,废水中Cd2+、Cr3+、Pb2+和Zn2+的去除率分别达到99.60 %、99.50 %、99.70 %和97.76 %,达到了国家排放标准.   相似文献   

18.
含铜废水的吸附处理研究   总被引:7,自引:0,他引:7  
胡巧开 《冶金能源》2005,24(2):59-62
探讨了用热改性膨润土处理含Cu^2 废水的工艺条件,并与粉煤灰和活性炭进行了比较。实验结果表明:当Cu^2 的初始浓度不大于100mg/L时,过200目的热改性膨润土的用量为5g/L、pH=7、搅拌速度为300r/min、吸附时间30min,热改性膨润土对Cu^2 的去除率达99.5%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号