首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Focused on phase separation and morphologies of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) active layers, we studied the effect of preparation conditions of the active layer on photovoltaic performance by changing concentration of P3HT:PCBM in the solvent. The performances of the cells varied depending on concentration of P3HT:PCBM (1:1 ratio by weight) in solvent even with the same thickness. The P3HT:PCBM active layer is prepared in cell structure of ITO/PEDOT/P3HT:PCBM/Al by changing spin-coating speed with different concentrations (1, 2 and 3 wt%) in chlorobenzene. Here, it was found that both the P3HT:PCBM concentrations and spin-coating conditions affected the crystalline structure formation, interchain interaction, morphology and phase separation during drying process of solvent and subsequent annealing.  相似文献   

2.
An ultrathin iridium layer was treated with O2-plasma to form an iridium oxide (IrOx), employed as a hole extraction layer in order to replace poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) in organic photovoltaic (OPV) cells with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM). The IrOx layer affects the self-organization of the P3HT:PCBM photo-active layer due to its hydrophobic nature, inducing a well-organized intraplane structure with lamellae oriented normal to the substrate. Synchrotron radiation photoelectron spectroscopy results showed that the work function increased by 0.57 eV as the Ir layer on ITO changed to IrOx by the O2-plasma treatment. The OPV cell with IrOx (2.0 nm) exhibits increased power conversion efficiency as high as 3.5% under 100 mW cm−2 illumination with an air mass (AM 1.5G) condition, higher than that of 3.3% with PEDOT:PSS.  相似文献   

3.
We report the solution processed graphene oxide (GO), NiOx and GO/NiOx bi-layer used as an anode interfacial layer in organic bulk-heterojunction solar cells. The bulk-heterojunction solar cells using GO, NiOx and GO/NiOx bi-layer exhibited the conversion efficiency of 2.33%, 3.10% and 3.48%, respectively. The cell efficiency is correlated with the matching of energy levels between ITO, hole transport layer and P3HT and thus a well-matched stack layer of ITO/GO/NiOx/P3HT:PCBM/LiF/Al shows the best cell efficiency of 3.48% with the JSC of 8.71 mA/cm2, VOC of 0.602 V and FF of 66.44%.  相似文献   

4.
Here, we have tried to make bulk heterojunction photovoltaic cells with enhanced nanoscale morphology by adding an ionomer (partially sulfonated polystyrene (PSP)) into a regioregular P3HT/(6,6)-phenyl C61-butyric acid methyl ester (PCBM) blend. We found that the polar ionic part of PSP may be miscible with PCBM and that the non-ionic part (polystyrene) is well miscible with P3HT. PSP can reduce the interfacial energy between P3HT and PCBM, resulting in nanoscale morphology. We have studied the relationship between photovoltaic characteristics and the morphology of the active layer.  相似文献   

5.
Inverted organic photovoltaic devices with a structure of fluorine tin oxide (FTO)/ZnO/poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PCBM)/Ag were fabricated, in which ZnO interlayer serves as an electron selective layer. The ZnO interlayer includes three different nanostructures: polycrystalline seed layer, polycrystalline seed layer/loose nanopillars and polycrystalline seed layer/dense nanopillars. The influences of the different ZnO interlayers on the device performance were investigated. It is concluded that the polycrystalline seed layer/loose nanopillars offer more interfacial area with the P3HT:PCBM blends and acts as a continuous conducting path to the cathode. Our results demonstrate that effective infiltration of the blends into the ZnO nanopillars is critical for optimizing the device performance.  相似文献   

6.
Here, we report the fabrication of high-efficiency poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend photovoltaic device. Process parameters like solvent, solvent drying conditions, electron donor to acceptor ratio and cathodes structures are optimized in making the devices. For the first time, we used cosolvent systems to make active layer of P3HT:PCBM composite and G-PEDOT:PSS, made by mixing 6 wt% glycerol to PEDOT:PSS, is used as a buffer layer. Highest efficiency of 4.64% was obtained for the device made with 1:0.7 ratio of P3HT to PCBM, o-dichlorobenzene:chloroform cosolvent, newly developed slow process and G-PEDOT:PSS. Film morphology is evaluated by atomic force microscopy (AFM). Time-of-flight (TOF) and incident photon-to-current conversion efficiency (IPCE) measurements are also performed for the best device.  相似文献   

7.
We have fabricated P3HT/PCBM based bulk-heterojunction photovoltaic cells with P3HT layer as the hole transport layer and PCBM layer as the electron transport layer between electrode and blended P3HT/PCBM layer in order to widen the photon harvesting layer. Current density has increased by about 1 mA/cm2 by the insertion of P3HT layer and the resulting conversion efficiency has been improved by about 20%. We have also fabricated a centimeter-scale active area with an efficiency of ∼1%.  相似文献   

8.
Several works concerning the incorporation of carbon nanotubes (CNTs) in bulk polymer RR-P3HT (regio-regular poly(3-hexylthiophene-2,5-diyl)):PCBM (methanofullerene phenyl–C61–butyric-acid–methyl-ester) heterojunction have been already reported by a number of research groups. The optical and electrical properties of organic cells have been extensively studied. We investigated the incorporation of functionalized single wall carbon nanotubes (SWCNTs) into the matrix of P3HT:PCBM photovoltaic (PV) cells. The photovoltaic characteristics of the cells depend on the concentration of SWCNT. The incorporation of low concentrations of SWCNT in the photoactive layer increases the current density Jsc before annealing and it can reach above 9 mA/cm2. We attribute the improved PV performances to partial crystallization of the RR-P3HT. As revealed by XRD studies and confirmed by the absorbance spectra, which exhibit the typical shoulder at 600 nm and absorbance in the near infrared region. Interestingly, we observe also that doping the P3HT:PCBM active layer by the functionalized SWCNTs increases the open circuit voltage Voc.  相似文献   

9.
Photovoltaic devices with highly ordered nanoporous titanium dioxide (titania; TiO2) were fabricated to improve the photovoltaic performances by increasing TiO2 interface area. The nanoimprinting lithography technique with polymethyl methacrylate (PMMA) mold was used to form titania nanopores. The solar cell with poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PCBM) active layer on nanoporous titania showed higher power conversion efficiency (PCE) of 1.49% than on flat titania of 1.18%. The improved efficiency using nanoporous titania is interpreted with the enhanced-charge separation and collection by increasing the interface area between TiO2 and active layer.  相似文献   

10.
The performance of heterojunction organic solar cells is critically dependent on the morphology of the donor and acceptor components in the active film. We report results of photovoltaic devices consisting of bilayers and bulk heterojunctions using poly(3-hexylthiophene) (P3HT) and Buckminsterfullerene C60. White light power efficiencies of η2.2% (bulk heterojunction) and 2.6% (bilayer) were measured after a thermal annealing step on completed devices. Optical and structural investigations on non-annealed bilayer thin films indicated a distinct porosity of the spin-coated polymer, which allows C60 to penetrate the P3HT layer and to touch the anode. This resulted for these bilayer solar cells in the experimental observation that electrons were collected predominantly at the cathode after photo-excitation of P3HT, but predominantly at the anode after C60 excitation. A morphological model to explain the ambipolar charge collection phenomenon is proposed.  相似文献   

11.
Here we describe the fabrication of the largest (233 cm2 total area) organic photovoltaic (OPV) module (polymer:fullerene) to be certified by the National Renewable Energy Laboratory (NREL). OPV solar cells were fabricated at Plextronics by spin coating a blend of poly 3-hexylthiophene-2,5 diyl (P3HT) and [6,6] phenyl C61 butyric acid methyl ester (PCBM) on top of our hole transport layer (HTL), Plexcore® OC. In laboratory-scale devices (0.09 cm2), this system routinely exhibits power conversion efficiencies exceeding 3.7%. This P3HT:PCBM active layer and HTL ink system was used to scale up to the larger area module (15.2 cm×15.2 cm module size, i.e. 233 cm2 total area; 108 cm2 active area), which was certified by NREL as having 1.1% total area efficiency (3.4% active area efficiency).  相似文献   

12.
Bulk heterojunction solar cells utilizing soluble phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2) have been investigated. The active layer was fabricated by spin-coating the mixed solution of C6PcH2 and 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM). The photovoltaic properties of the solar cell with bulk heterojunction of C6PcH2 and PCBM demonstrated the strong dependence of active layer thickness, and the optimized active layer thickness was clarified to be 120 nm. By inserting MoO3 hole transport buffer layer between the positive electrode and active layer, the FF and energy conversion efficiency were improved to be 0.50 and 3.2%, respectively. The tandem organic thin-film solar cell has also been studied by utilizing active layer materials of C6PcH2 and poly(3-hexylthiophene) and the interlayer of LiF/Al/MoO3 structure, and a high Voc of 1.27 V has been achieved.  相似文献   

13.
Cyanoporphyrins have been included into the active layer of bulk heterojunction poly (3-hexylthiophene) (P3HT): [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) solar cells. The amount of porphyrin, P3HT and PCBM were systematically varied and the characteristics of the devices from the corresponding active layers were recorded. The spectral responses of the devices showed that the addition of the porphyrin to the active layer broadened the absorption efficiency of the device and led to a porphyrin contribution to the photocurrent of the solar cell. The porphyrin molecules did not contribute to the photocurrent unless both P3HT and PCBM were present in the active layer. In most cases, the porphyrin was unable to contribute to the photocurrent after the devices had been annealed, suggesting changes to the morphology of the active layer.  相似文献   

14.
15.
In this letter, organic solar cell modules based on poly-3-hexylthiophene (P3HT) and [6.6]-phenyl-C61-butyric acid methyl ester (PCBM) blend films with a module active area of 15.45 cm2 prepared by roll-to-roll (R2R) compatible gravure printing method are demonstrated. The gravure printed organic photovoltaic modules consist of eight serially connected solar cells in same substrate. Indium-tin-oxide (ITO) is patterned by screen printable etching paste. Hole injection layer and active layer are prepared by gravure printing method. All processing steps excluding cathode evaporation are performed in air. Electrical measurements are done to modules consisting of 5-8 serially connected solar cells. The photovoltaic modules comprising 5, 7 and 8 serially connected cells exhibit an active area power conversion efficiency of 1.92%, 1.79% and 1.68%, respectively (Oriel Sol3A Class AAA, AM1.5G, 100 mW cm−2).  相似文献   

16.
Photovoltaic devices based on regioregular poly(3-hexylthiophene) (P3HT) and ([6,6]-phenyl-C61-butyric acid methyl ester) (PCBM) were fabricated and characterized using 5×5 cm ITO polyester foils with an active cell area of 0.5×0.5 cm2. The HOMO/LUMO of P3HT and PCBM were estimated from cyclic voltammetry data. The complete quenching of photoluminescence of P3HT after mixing with PCBM indicates an effective charge transfer from P3HT to PCBM. The absorption spectrum of a blend (1:3 wt%) of both components shows that there is no ground state doping. Following device parameters without any special postproduction treatment were determined: VOC=600 mV, ISC=6.61 mA/cm2, FF=0.39 and ηAM1.5 (PIN:100 mW/cm2)=1.54%.  相似文献   

17.
We present a methodology which allows designing photonic crystals slabs (PCs) able to couple incident light into “slow Bloch modes” (SBMs) and dealing with their incorporation in an organic solar cell (OSC). We theoretically study different structures based on the same couple of organic materials (poly-3-hexylthiophène (P3HT) as donor and [6,6]-phenyl-C61-butiryc acid methyl ester (PCBM) as acceptor): a 2D photonic crystal based on a perfectly ordered P3HT/PCBM blend (placed in the air), a 1D photonic crystal based on a nanostructured PEDOT:PSS (Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) layer embedded in a P3HT:PCBM host matrix (first placed in the air and then inserted in an organic solar cell) and finally a 1D photonic crystal based on a nanostructured P3HT:PCBM layer covered by a metallic electrode and inserted in an OSC ( with and without nanostructuration of the PEDOT:PSS layer). We show that the light coupling into SBMs in an OSC depends on vertical interferences and that optical spacers are needed. We then demonstrate that the P3HT:PCBM active layer nanostructuring covered by a thick metallic electrode exhibits the highest gain (4% in the 400–700 nm spectral range) thanks to a simultaneous optimisation of the optical properties of the photonic crystal (coupling of SBM) and of the stack of the organic solar cell (vertical interferences).  相似文献   

18.
We describe a study of the stabilization behavior of P3HT/PCBM organic solar cells under air and UV irradiation using a 20 nm thin TiOx protection layer made by partial hydrolysis of a Ti-alkoxide and spin coating in air. Data on the degradation of solar cell performance under air and under UV exposure are presented indicating that significant improvements are observed with TiOx layer protection. The protection mechanism has been investigated by transmission IR and UV spectroscopy and by ESR spectroscopy. The results of this study suggest how sol-gel derived TiOx films containing organic functionalities serve as effective passivation films for protection from oxygen when excited by photons, where the photooxidation of the bound organic moieties causes oxygen gas scavenging.  相似文献   

19.
We demonstrate semitransparent inverted polymer solar cells with highly transparent anodes. The structure of the anode is made up of molybdenum trioxide (MoO3)/silver (Ag)/tungsten oxide (WO3). The inner MoO3 layer is introduced as a buffer layer to improve hole collection, while the outer WO3 layer serves as a light coupling layer to enhance optical transmittance of the photovoltaic device. The dependence of device performances on thickness of the outer WO3 layer was investigated, and the transmittance and reflectance of MoO3 (1 nm)/Ag(10 nm)/WO3(x=0, 20, 40, 60, and 80 nm) electrode are compared. A high transmission of 90% was achieved for semitransparent inverted polymer solar cells with a 40 nm thick outer WO3 layer.  相似文献   

20.
Fe3O4 magnetic nanoparticles (mean size of about 10 nm) capped by surfactant oleic acid (OA) were incorporated into P3HT:PCBM BHJ-PSCs by doping in the P3HT:PCBM photoactive layer for the first time. The PCE of the OA-Fe3O4:P3HT:PCBM BHJ-PSC device is enhanced by ∼18% at the optimum OA-Fe3O4 NPs doping ratio of 1%. The role of the magnetic property of Fe3O4 NPs on the PCE of OA-Fe3O4:P3HT:PCBM devices was studied, confirming the exclusive contribution of the Fe3O4 NPs to the observed enhancement of PCE. The enhancement of the PCE of the OA-Fe3O4:P3HT:PCBM BHJ-PSC device is found to be primarily due to the increase of short-circuit current (Jsc) by ∼14%, which is attributed to the magnetic field effect originated from the superparamagnetism of Fe3O4 NPs, resulting in the increase of the population of triplet excitons. Finally, the effect of Fe3O4 NPs on the enhancement of PCE of OA-Fe3O4:P3HT:PCBM device is further investigated by comparing different means of doping in P3HT:PCBM or PEDOT:PSS layer, confirming that such an effect can be achieved only when Fe3O4 NPs are doped in the P3HT:PCBM photoactive layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号