首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 10 毫秒
1.
Thickness insensitive spectrally selective (TISS) paint coatings based on a polyurethane polymeric binder deposited on copper substrates were investigated to obtain information about their service lifetime. The degradation of TISS paint coatings was performed according to the methodology worked out within Task 10 of the IEA's Solar heating and the cooling programme. The activation energy (Ea) for the degradation process was derived from vibrational band changes of the polyurethane binder recorded in the infrared hemispherical reflectance spectra of TISS paint coatings exposed to different thermal loads. The results of the vibrational band analysis were correlated with cross-cut tests, showing that the coatings started to lose integrity at 190 °C but protected the copper substrate against oxidation perfectly even at 200 °C (15 days). An accelerated test procedure confirmed that TISS coatings could be safely used in solar collectors for at least 45 years.  相似文献   

2.
Red, green and blue paints were prepared for use as thickness insensitive spectrally selective (TISS) paint coatings for solar façade absorbers. The paints were composed of a polyurethane resin binder in which various pigments were incorporated in such a way that they formed stable paint dispersions, satisfying stability criteria for façade coatings. A low emittance of the paints was achieved by using low-emittance aluminium flake pigments combined with iron oxide (red coloured paints). Black pigment was added to adjust solar absorptance. Blue and green paints were made by the addition of coloured aluminium flake pigment and the solar absorptance was also adjusted by the addition of black pigment. Efficiency for photo-thermal conversion of solar radiation was assessed by evaluation of the corresponding performance criteria, which enabled the selection of paints whose performance criteria values were higher than 0 (spectrally non-selective black coating). The results confirmed that blue and green paints and to minor extent red ones, combined selectivity with colour. The morphology of the paints was assessed, revealing that the colours originated from the deposition of finely dispersed colour and/or black pigment on the surface of the aluminium flakes during paint preparation.  相似文献   

3.
The objective of this study was to make paints having a variety of colours and whose spectral selectivity would be independent of the thickness of the deposited layer of paint (thickness insensitive spectrally selective (TISS) paint coatings). TISS paint coatings combine the advantages of paints (longevity and chemical resistance achieved by a high thickness of the applied layer, variety of colours and simple application) with spectral selectivity. Low emittance is attained by the addition of bare aluminium, coloured aluminium flake pigments or copper flake pigments, while other inorganic pigments impart various colours to the paints. Pigments were dispersed in silicone resin binder imparting the TISS paint coatings high-temperature tolerance, excellent adhesion, uv resistance, flexibility and weather-durability, which make them suitable coatings for coloured glazed or unglazed solar absorbers.  相似文献   

4.
The spectrally selective paint coatings were prepared from organically modified siloxane resin and inorganic pigment (FeMnCuOx-P320). To optimise the low-emittance properties, different thicknesses of paints were applied on high-reflecting Al foil by a draw bar coater. For all paints, optical and thermal properties were determined as well as their adhesion resistance. Pigment to volume concentration ratio was 20% and for thicknesses of about 1.7–2.0 g/m2, the solar absorptance for these samples were as=0.90–0.92 with corresponding thermal emittance of eT=0.20–0.25. Temperature stability of these samples was followed by FT-IR spectroscopy at 300°C. The obtained results indicated good temperature stability of prepared paint coatings.  相似文献   

5.
Ultra-high temperature ceramics (UHTCs) are interesting materials for a large variety of applications under extreme conditions. This paper reports on the production and extensive characterization of highly dense, pure zirconium and tantalum diborides, with particular interest to their potential utilization in the thermal solar energy field. Monolithic bulk samples are produced by Spark Plasma Sintering starting from elemental reactants or using metal diboride powders previously synthesized by Self-propagating High-temperature Synthesis (SHS). Microstructural and optical properties of products obtained by the two processing methods have been comparatively evaluated. We found that pure diborides show a good spectral selectivity, which is an appealing characteristic for solar absorber applications. No, or very small, differences in the optical properties have been evidenced when the two investigated processes adopted for the fabrication of dense TaB2 and ZrB2, respectively, are compared.  相似文献   

6.
This study describes the development of multilayer metal-dielectric graded index solar selective coatings in which the metallic volume fraction increases with depth, from top (air–film interface) to bottom (film–substrate interface). The work is based on computer simulation followed by validation through fabrication of the coatings and optical measurements. The influence of the choice of the number of layers present in a graded index composite selective absorber and results obtained for a new destructive interference bilayer (four-layer system) coating, designed using the computer model, were studied. The design and optimization of the composite coating was undertaken using a computer tool developed within this program of research employing Bruggeman and Maxwell–Garnett effective medium formalisms. The design tool enabled all key design parameters, with the exception of particle size and orientation, to be varied systematically to permit the sensitivity of the optical properties of the selective absorber coating to be studied.The model was validated with a supporting program of experimental research in which many different selective absorbers were prepared by co-sputtering of metal and dielectric materials.Although the best compositional gradation can be achieved by increasing the number of layers, the variation in optical performance beyond a certain number of layers is minimal. The destructive interference produced between adjacent layers contributes to the absorptance. The effect of the number of layers (single, four and 10) has been calculated for various materials such as nickel, vanadium, tungsten, cobalt and chromium based coatings. Solar absorptance of 0.98 and 0.96 was achieved by simulation and experimental findings with less than 0.07 thermal emittance at 300 K for 200 nm thick, 4-PGSAC (four-layer system) of V : Al2O3 composites. Other designs showed lower optical performance for all the material combinations regardless of their individual optical properties. Use of such thin film coating on the absorbers of solar thermal appliances can reduce thermal losses significantly, which could be of importance to the relevant industry.  相似文献   

7.
The focus of attention in this study was the choice of material for optically solar selective coatings on the basis of their optical constants. A computer programme which calculates the optical constants, solar absorptance at air mass (AM)-2, α, and thermal emittance at 300 K, , of the 200-nm-thick selective coating on the assumption of both the Maxwell Garnett and Bruggeman theories for the metallic volume fraction below and above 0.3 respectively, was used to design the structure of the composite films. Two systems of composite thin films of metal and dielectric were investigated experimentally, fabricated by RF and DC sputter coater and were verified with computer simulations. One system consist of lower refractive index composites such as Ni : SiO2 and the other of higher refractive index composites such as V : Al2O3 in the spectral range of 0.3–20 μm. These films were fabricated on infrared reflective substrates such as nickel plated copper or aluminium. Results of the copper substrates are being presented here. For comparison and verification, tungsten, cobalt and chromium based composites, having different refractive indices, were also investigated which validated the concept of the choice of material in selective coatings. It was observed that high refractive index composites have lower reflective properties by choosing suitable metallic volume fraction in dielectric and antireflection coating. The higher value of the imaginary part of refractive index, k, is responsible for higher absorption by a factor αλ=4πk/λ. Solar absorptance of 0.98 and 0.96 was achieved by simulation and experimental findings with less than 0.05 thermal emittance for 200 nm thick composites of V : Al2O3. It results that higher values of both n and k of the material are more suitable in solar selective coatings.  相似文献   

8.
An organic–inorganic nanocomposite was prepared via sol–gel processing from 3-(trimethoxysilyl)propyl methacrylate (MAPTMS) and titanium(IV) isopropoxide (TIP) precursors (TiMEMO) in the form of a viscous resin, and used as a binder for the preparation of coloured thickness insensitive spectrally selective (TISS) paints and corresponding solar absorber coatings. The spectral selectivity of TiMEMO-based TISS paints was optimized by varying the concentrations of binder and different pigments: black, coloured (red, green and blue) and aluminium flakes, the latter imparting low thermal emittance, which was correlated to the presence of titanium in the TiMEMO sol–gel host. The formation and the ensuing structure of the sol–gel TiMEMO hybrid was studied in detail and the nanocomposite structure of the TiMEMO binder formed was assessed from infrared and 29Si NMR measurements, which confirmed the formation of Ti–O–Si linkages established after the hydrolysed precursors condensed into a compliant resinous material. XRD measurements provided additional information about the existence of small coherent domains of silsesquioxane units in the sol–gel host. The abrasion resistance of the non-pigmented TiMEMO binder deposited in thin film form on a PMMA substrate was assessed by the Taber test, and its hardness compared with other resin binders which have been used for making TISS paint coatings. The surface properties of the non-pigmented TiMEMO binder and the ensuing TISS paint coatings were determined from contact angle measurements. The results showed that the water contact angles of non-pigmented TiMEMO binder increased from 70° to 125–135° for the corresponding pigmented TISS paint coatings, inferring the influence of surface roughness on surface energy in the presence of pigments. SEM measurements revealed a striking similarity in the surface morphology of the TISS paint coatings with some other surfaces exhibiting the Lotus effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号