首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work aims at developing a new composite material based on nanosized semiconducting CuInS2 (CIS) particles combined with silicon nanowires grown on a silicon substrate (SiNWs/Si) for photoelectrochemical (PEC)-splitting of water. The CIS particles were prepared via a colloidal method using N-methylimidazole (NMI) as the solvent and an annealing treatment. The SiNWs were obtained by chemical etching of silicon (100) substrates assisted by a metal. The CIS/SiNWs/Si composite material was obtained by deposition of an aliquot of a suspension of CIS particles onto the SiNWs/Si substrate, using spin coating followed by a drying step. The XRD pattern demonstrated that CuInS2 grows in the tetragonal/chalcopyrite phase, while SiNWs/Si presents a cubic structure. The SEM images show semi-spherical particles (~10 nm) distributed on the surface of silicon nanowires (~10 μm). The EIS measurements reveal n-type conductivity for CIS, SiNWs/Si and CIS/SiNWs/Si materials, which could favour the oxidation reaction of water molecules.  相似文献   

2.
Li3V2(PO4)3 and Li3V2(PO4)3/C powders are prepared by ultrasonic spray pyrolysis from spray solutions with and without sucrose. The precursor powders have a spherical shape and the crystal structure of V2O3 irrespective of the concentration of sucrose in the spray solution. The powders post-treated at 700 °C have the pure crystal structure of the Li3V2(PO4)3 phase irrespective of the concentration of sucrose in the spray solution. The Li3V2(PO4)3 powders prepared from the spray solution without sucrose have a non-spherical shape and hard aggregation. However, the Li3V2(PO4)3/C powders prepared from the spray solution with sucrose have a spherical shape and non-aggregation characteristics. The Li3V2(PO4)3 powders prepared from the spray solution without sucrose have a low initial discharge capacity of 122 mAh g−1. However, the Li3V2(PO4)3/C powders prepared from the spray solutions with 0.1, 0.3, and 0.5 M sucrose have initial discharge capacities of 141, 130, and 138 mAh g−1, respectively. After 25 cycles, the discharge capacities of the powders formed from the spray solutions with and without 0.1 M sucrose are 70% and 71% of the initial discharge capacities, respectively.  相似文献   

3.
We investigated a simple field effect passivation of the silicon surfaces using the high-pressure H2O vapor heating. Heat treatment with 2.1×106 Pa H2O vapor at 260°C for 3 h reduced the surface recombination velocity from 405 cm/s (before the heat treatment) to 38 cm/s for the thermally evaporated SiOx film/Si. Additional deposition of 140 nm-SiOx films (x<2) with a high density of fixed positive charges on the SiO2/Si samples further decreased the surface recombination velocity to 22 cm/s. We also demonstrated the field effect passivation for n-type silicon wafer coated with thermally grown SiO2. Additional deposition of 210 nm SiOx films on both the front and rear surfaces increased the effective lifetime from 1.4 to 4.6 ms. Combination of thermal evaporation of SiOx film and the heat treatment with high-pressure H2O vapor is effective for low-temperature passivation of the silicon surface.  相似文献   

4.
A polybenzimidazole (PBI)/Sn0.95Al0.05P2O7 (SAPO) composite membrane was synthesized by an in situ reaction of SnO2 and Al(OH)3-mixed powders with an H3PO4 solution in a PBI membrane. The formation of a single phase of SAPO in the PBI membrane was completed at a temperature of 250 °C. Thermogravimetric analysis showed that the PBI membrane was not subject to a serious damage by the presence of SAPO until 500 °C. Scanning electron microscopy revealed that SAPO particles with a diameter of approximately 300 nm were homogeneously dispersed and separated from each other in the PBI matrix. Proton magic angle spinning nuclear magnetic resonance spectra confirmed the presence of new protons originating from the SAPO particles in the composite membrane. As a consequence of the interaction of protons in the SAPO with those in the free H3PO4, the H3PO4-doped PBI/SAPO composite membrane exhibited conductivities several times higher than those of an H3PO4-doped PBI membrane at room temperature to 300 °C, which could contribute to the improved performance of H2/O2 fuel cells.  相似文献   

5.
LiFePO4-Li3V2(PO4)3 composite cathode material is synthesized by aqueous precipitation of FeVO4·xH2O from Fe(NO3)3 and NH4VO3, following chemical reduction and lithiation with oxalic acid as the reducer and carbon source. Samples are characterized by XRD, SEM and TEM. XRD pattern of the compound synthesized at 700 °C indicates olivine-type LiFePO4 and monoclinic Li3V2(PO4)3 are co-existed. TEM image exhibits that LiFePO4-Li3V2(PO4)3 particles are encapsulated with a carbon shell 5-10 nm in thickness. The LiFePO4-Li3V2(PO4)3 compound cathode shows good electrochemical performance, and its discharge capacity is about 139.1 at 0.1 C, 135.5 at 1 C and 116 mA h g−1 at 3 C after 30 cycles.  相似文献   

6.
Phosphorous silicate glass (PSG) was formed at the temperature range 800–900°C during diffusion of phosphorous (P) into Si wafers from liquid POCl3 source in ambient atmosphere of N2 and O2. The thickness and refractive indices were measured by an ellipsometer. The refractive index increased with the temperature of formation upto 875°C and then became constant at which point PSG is saturated with P. From the growth rate data at different temperatures, the linear and parabolic activation energies were determined as 0.79 and 1.43 eV for parabolic and linear rate constants, respectively. Therefore, growth rate of PSG is higher than thermal SiO2. The PSG films were found to have refractive indices 1.85, 1.78, 1.74 and 1.71 for forming temperature 800°C, 825°C, 850°C and 875°C, respectively. Reflectivity varied from 2.5% to 7.5% in the wavelength range 450–700 nm. SIMS depth profiling suggests that there has been a pile up of P on the Si side at the Si/SiO2 (PSG) interface.  相似文献   

7.
Layered polysilane (Si6H6) has a graphite-like structure with higher capacity than crystalline silicon. The rate of increase of the thickness of a layered polysilane electrode after 10 charge-discharge cycles was smaller than that for a Si powder electrode, although the layered polysilane electrode has higher capacity. The structural changes of electrochemically lithiated and delithiated layered polysilane at room temperature were studied using scanning electron microscopy, X-ray diffraction and Raman spectroscopy. Layered polysilane became amorphous by insertion of lithium to 0 V, whereas insertion of lithium into crystalline silicon produces Li15Si4. Layered polysilane maintained an amorphous state during lithium insertion and deinsertion, whereas silicon changed between Li15Si4 and amorphous LixSi, which explains the smaller volume change of a layered polysilane electrode compared with a Si powder electrode.  相似文献   

8.
FeSi6/graphite composite was prepared by mechanical ball milling. The FeSi6 alloy particles consist of an electrochemically active silicon phase and inactive phases FeSi2, distributed uniformly in the graphite matrix. The composite anode offers a large reversible capacity (about 800 mAh g−1) and good cycleability, due to the buffering effect of the inactive FeSi2 phase and graphite layers on the volumetric changes of Si phase during lithium–Si alloying reaction. Since FeSi6 alloy is a low-cost industrial material, this alloy compound provides a possible alternative for development of high capacity lithium-ion batteries.  相似文献   

9.
H3PO4 content plays a critical role in high temperature proton exchange membrane fuel cells (HT-PEMFC), as it is responsible for the majority of the conductivity of the key components under high temperature operation. The conductivities of commercial AB-PBI membranes doped by immersing in 85 wt.% H3PO4 for different times and temperatures are investigated. The effect of H3PO4 loading in electrodes, including the AB-PBI polymer and a Pt/C catalyst, is also studied. The as-prepared electrodes and membranes are combined to fabricate a membrane electrode assembly for HT-PEMFCs. The results reveal that AB-PBI membranes doped with 85 wt.% H3PO4 at 90 °C for 9 h display a maximum conductivity of 33 mS cm−1. This membrane was selected and combined with electrodes including 15 wt.% AB-PBI and 0.75 mg cm−2 Pt with different H3PO4 loadings. A maximum current density of 260 mA cm−2 was achieved in the as-prepared MEA (with 5 mg cm−2 H3PO4 in electrodes) operating at 0.6 V and 160 °C, using oxygen and hydrogen.  相似文献   

10.
To prepare a high-capacity cathode material with improved electrochemical performance for lithium rechargeable batteries, Co3(PO4)2 nanoparticles are coated on the surface of powdered Li[Co0.1Ni0.15Li0.2Mn0.55]O2, which is synthesized by a simple combustion method. The coated powder prepared under proper conditions for Co3(PO4)2 content and annealing temperature shows an optimum coating layer that consists of a LixCoPO4 phase formed by reaction with lithium impurities during heat treatment. A sample coated with 3 wt.% Co3(PO4)2 and annealed at 800 °C proves to be the best in terms of specific capacity, cycle performance and rate capability. Thermal stability is also enhanced by the coating, as demonstrated a decrease in the onset temperature and/or the heat generated during thermal runaway.  相似文献   

11.
A new approach has been developed to rapidly synthesize nanostructured LiMn2O4 thin films by flame spray deposition (FSD) and in situ annealing. A precursor solution of lithium acetylacetonate and manganese acetylacetonate in an organic solution was supplied through a flame spray pyrolysis (FSP) reactor. The liquid solution spray was ignited and stabilized by a premixed methane/oxygen flame ring surrounding the FSP nozzle. Thus, LiMn2O4 nanoparticles were formed by combustion and deposited onto a current collector followed by in situ annealing. Two different types of current collectors, i.e. stainless steel and aluminum coated with carbon-based primer were tested. The prepared thin films were characterized by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties of the thin films were evaluated by cyclic voltammetry and galvanostatic cycling. The LiMn2O4 films exhibited good cyclability. Films that underwent sintering and crystal growth during in situ annealing developed more robust film structures on the current collector surface and exhibited better electrochemical performance than poorly adhered films.  相似文献   

12.
The monoclinic-type Li3V2(PO4)3 cathode material was synthesized via calcining amorphous Li3V2(PO4)3 obtained by chemical reduction and lithiation of V2O5 using oxalic acid as reducer and lithium carbonate as lithium source in alcohol solution. The amorphous Li3V2(PO4)3 precursor was characterized by using TG–DSC and XPS. The results showed that the V5+ was reduced to V3+ by oxalic acid at ambient temperature and pressure. The prepared Li3V2(PO4)3 was characterized by XRD and SEM. The results indicated the Li3V2(PO4)3 powder had good crystallinity and mesoporous morphology with an average diameter of about 30 nm. The pure Li3V2(PO4)3 exhibits a stable discharge capacity of 130.08 mAh g−1 at 0.1 C (14 mA g−1).  相似文献   

13.
LiFePO4, olivine-type LiFe0.9Mn0.1PO4/Fe2P composite was synthesized by mechanical alloying of carbon (acetylene back), M2O3 (M = Fe, Mn) and LiOH·H2O for 2 h followed by a short-time firing at 900 °C for only 30 min. By varying the carbon excess different amounts of Fe2P second phase was achieved. The short firing time prevented grain growth, improving the high-rate charge/discharge capacity. The electrochemical performance was tested at various C/x-rate. The discharge capacity at 1C rate was increased up to 120 mAh g−1 for the LiFe0.9Mn0.1PO4/Fe2P composite, while that of the unsubstituted LiFePO4/Fe2P and LiFePO4 showed only 110 and 60 mAh g−1, respectively. Electronic conductivity and ionic diffusion constant were measured. The LiFe0.9Mn0.1PO4/Fe2P composite showed higher conductivity and the highest diffusion coefficient (3.90 × 10−14 cm2 s−1). Thus the improvement of the electrochemical performance can be attributed to (1) higher electronic conductivity by the formation of conductive Fe2P together with (2) an increase of Li+ ion mobility obtained by the substitution of Mn2+ for Fe2+.  相似文献   

14.
A novel phosphoric acid doped Nafion–polybenzimidazole (H3PO4/Nafion–PBI) composite membrane was prepared and the H2/O2 single cell durability was tested at 150 °C without humidification. The durability was improved 55% compared with that of phosphoric acid doped polybenzimidazole (H3PO4/PBI). During the durability test, the hydrogen permeability of the membrane and the internal resistance of the single cell were detected using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS), respectively. Before and after the durability test, the mechanical strength of the membranes was measured by stress–strain tests. The results of characterization indicated that the enhanced durability of the membrane attributed to the improved mechanical strength, which benefited from the presence of Nafion in the Nafion and PBI matrix. The preliminary results suggested that the novel H3PO4/Nafion–PBI composite membrane is a good candidate in high temperature PEMFC for achieving longer cell lifetime.  相似文献   

15.
Biochar is a potential catalyst for methane decomposition (CMD) owing to its environmental-friendly and application prospects. In this work, the hierarchical porous biochar was prepared by carbonization and H3PO4 activation using Enteromorpha prolifera (EP) as precursor, respectively. The results show that when the ratio of H3PO4/EP is 1.5, the maximum CH4 conversion is 46%, along with hydrogen output of 396 mmol/gcat, which is 5.8 times as that of the unactivated biochar. The characterization results by XPS, Raman, SEM and HRTEM indicate that P element is inserted in carbon layer in the form of C–O–P, resulting in lattice distortion of carbon layer and larger defect density, and C–O–P plays a dominant role in initial CH4 conversion. The mesopores formed by H3PO4 activation alleviate the influence of the deposited carbon on the catalyst and decrease the deactivation rate, thereby exhibiting better performance in CMD.  相似文献   

16.
Thin-film solid oxide fuel cells (SOFCs) were fabricated with both Pt and mixed conducting oxide cathodes using sputtering, lithography, and etching. Each device consists of a 75–150 nm thick yttria-stabilized zirconia (YSZ) electrolyte, a 40–80 nm porous Pt anode, and a cathode of either 15–150 nm dense La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF) or 130 nm porous Pt. Maximum powers produced by the cells are found to increase with temperature with activation energies of 0.94–1.09 eV. At 500 °C, power densities of 90 and 60 mW cm−2 are observed with Pt and LSCF cathodes, respectively, although in some conditions LSCF outperforms Pt. Several device types were fabricated to systematically investigate electrical properties of components of these fuel cells. Micro-fabricated YSZ structures contacted on opposite edges by Pt electrodes were used to study temperature-dependent in-plane conductivity of YSZ as a function of lateral size and top and bottom interfaces. Si/Si3N4/Pt and Si/Si3N4/Au capacitor structures are fabricated and found to explain certain features observed in impedance spectra of in-plane and fuel cell devices containing silicon nitride layers. The results are of relevance to micro-scale energy conversion devices for portable applications.  相似文献   

17.
Plate-like Li3V2(PO4)3/C composite is synthesized via a solution route followed by solid-state reaction. The Li3V2(PO4)3/C plates are 40-100 nm in thicknesses and 2-10 μm in lengths. TEM images show that a uniform carbon layer with a thickness of 5.3 nm presents on the surfaces of Li3V2(PO4)3 plates. The apparent Li-ion diffusion coefficient of the plate-like Li3V2(PO4)3/C is calculated to be 2.7 × 10−8 cm2 s−1. At a charge-discharge rate of 3 C, the plate-like Li3V2(PO4)3/C exhibits an initial discharge capacity of 125.2 and 133.1 mAh g−1 in the voltage ranges of 3.0-4.3 and 3.0-4.8 V, respectively. After 500 cycles, the electrodes still can deliver a discharge capacity of 111.8 and 97.8 mAh g−1 correspondingly, showing a good cycling stability.  相似文献   

18.
A series of Li deficient LiTi2(PO4)3 samples were prepared and sintered and the density was measured to determine the rate-controlling species for sintering of LiTi2(PO4)3. It was observed that as the Li content decreased the density decreased. This result suggests that oxygen does not control sintering. A comparison of the LiTi2(PO4)3 sintering data to sintering and diffusion data in olivine, which exhibits a similar framework structure to LiTi2(PO4)3, suggests that P is the species which controls sintering. This suggestion was confirmed by the density results of a Li excess LiTi2(PO4)3 sample.  相似文献   

19.
Si-diffusion from Si-based substrates into yttria-stabilized-zirconia (YSZ) thin films and its impact on their microstructure and chemistry is investigated. YSZ thin films used in electrochemical applications based on micro-electrochemical systems (MEMS) are deposited via spray pyrolysis onto silicon-based and silicon-free substrates, i.e. SixNy-coated Si wafer, SiO2 single crystals and Al2O3, sapphire. The samples are annealed at 600 °C and 1000 °C for 20 h in air. Transmission electron microscopy (TEM) showed that the SixNy-coated Si wafer is oxidized to SiOz at the interface to the YSZ thin film at temperatures as low as 600 °C. On all YSZ thin films, silica is detected by X-ray photoelectron spectroscopy (XPS). A particular large Si concentration of up to 11 at% is detected at the surface of the YSZ thin films when deposited on silicon-based substrates after annealing at 1000 °C. Their grain boundary mobility is reduced 2.5 times due to the incorporation of SiO2. YSZ films on Si-based substrates annealed at 600 °C show a grain size gradient from the interface to the surface of 3 nm to 10 nm. For these films, the silicon content is about 1.5 at% at the thin film's surface.  相似文献   

20.
New-type solar cells, having a structure “transparent conductor/thin Si02 layer with ultrafine metal islands as conductive channels/n-Si” have been prepared by forming a very thin (< 1.0 nm) silicon oxide (Si02) layer as well as platinum (Pt) islands (5–50 nm in size) embedded in it on a single crystal n-type silicon (n-Si) wafer, followed by the deposition of an indium tin oxide (ITO) film (200 nm thick) by the electron-beam evaporation method. The open-circuit photovoltages (Voc) of the solar cells of the above structure were relatively low, 0.25–0.47 V, but they increased very much to 0.50–0.59 V if a thin (3–10 nm) layer of an organic compound such as copper phthalocyanine (CuPc) was pre-deposited on the Pt-island modified n-Si wafer before the ITO deposition. The reason for the beneficial effect of the pre-deposition of the thin CuPc layer was investigated in detail, and it has been found that certain crystal defects are formed in n-Si near the n-Si/Si02 interface during the ITO deposition in the absence of the CuPc layer. The formation of such defects is prevented in the presence of the CuPc layer, which leads to a decrease in surface carrier recombination and hence to the increase in Voc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号