首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Explosive welding is a solid state process in which controlled explosive detonations force two or more metals together at high pressures. The resultant arrangement is joined with a high quality metallurgical bond. The aim of this study was to investigate of strength of explosive welding metals which had same chemical compositions. In this study, it was taken different welding interfaces (straight, wavy and continuous solidified-melted) with changing explosive welding parameters (stand-off distance (s), explosive loading (R) and anvils). Joined metals were investigated in heat treatment and non heat treatment conditions. Microstructures, microhardness, tensile shear strength and bending test results were reported. Effect of anvil on explosive welding process was evaluated in joining/no joining performance. It was shown that bonding interface changed from straight to wavy structure when explosive loading and stand-off distance were increased. On wavy interface, when explosive loading was increased wavy length and amplitude increased. Results of tensile shear and bending tests showed that heat treated specimens have more strength than which of unheat-treated ones. According to tensile shear test results, straight and wavy interfaces had similar strength. Also, bending zone has shown some cracks after the bending test of unheated specimens.  相似文献   

2.
《Materials & Design》2005,26(6):497-507
In this study, bonding ability of copper and steel with explosion welding was investigated using different ratios of explosive and different stand-off distance. Experimental studies showed out that, copper and stainless steel could be bonded with a good quality of bonding properties with explosion welding. In the bonding interface, intermetallics were not formed. It was observed that, when explosive ratio and stand-off distance were increased smooth bonding interface was transformed to a wavy bonding interface. As the ratio of explosive and stand-off distance increase, the amplitude and wavelength of wave were increased. It was found that, hardness of bonding interface and outer face of plates were increased because of deformation that was originating from impact the effect. Total interface area increased as a result of wavy interface, which was caused by increased explosive ratio and stand-off distance. In addition, wavy interfaces did not separate after tensile-shearing test. Bending tests applied on bonded samples had different diameters indicated that interfaces of the bonded samples have not any defect. EDS analyses in SEM showed that diffusion did not take place between bonding plates, however, diffusion was observed after annealing of the bonded samples for different times.  相似文献   

3.
The aim of this paper is investigation of microstructure and property relationship in aluminum-HSLA steel and aluminum-dual phase steel bimetals fabricated by explosive welding technique. Dual phase steel was produced by intercritical annealing and water quenching from 1.45Mn-0.2Si-0.186C HSLA steel. Hardness, tensile shear strength, tensile strength, toughness and microstructure of explosively welded aluminum-HSLA steel and aluminum-dual phase steel were evaluated. Both bimetals have a straight bonding interface. It was also seen that plastic deformation of dual phase steel was higher than HSLA steel near interfaces of bimetals. The hardness was increased near the bond interface of bimetals. Tensile and tensile shear strength tests showed that aluminum-dual phase steel is superior than aluminum-HSLA steel. Also, impact toughness of aluminum-dual phase steel was found significantly higher than that of aluminum-HSLA steel.  相似文献   

4.
爆炸焊接理论与技术新进展   总被引:2,自引:0,他引:2  
史长根  王洋  尤峻 《爆破器材》2007,36(3):27-30
爆炸焊接理论与技术取得了四个方面的进展:(1)发现并重新定义了三种结合界面:大波状、小波状和微波状,其中以微波状为最佳.首次发现在一个复合板中,界面波呈一定的规律分布.(2)针对爆炸焊接熔焊机理的局限性,首次提出并验证了"爆炸焊接是一种特殊压力焊"的新观点.(3)为了得到无熔化的良好界面,必须选取焊接下限,按照新的复板模型,得到了新的焊接下限,比传统下限小20%,并适宜于工程应用.(4)首次测试并研究了爆炸焊接荷载下地基的应力应变规律.通过地基参数的优化分析,得到了最适宜于爆炸焊接的沙土地基(含水量17.00%、密度1.74g/cm3).  相似文献   

5.
Explosive welding was used to produce scarf joint between aluminum and copper plates. This process is known as explosive scarf welding (ESW). In a scarf joint, the final bond interface is oblique. In this study, chamfered end of aluminum and copper plates were joined explosively and named scarf joint, employing changes in chamfered angle at different stand‐off distance and explosive loading. The geometry of scarf joint enables consideration of both flyer and base plate thickness and explosive loading and the effects on mechanical properties of interface such as bond shear strength and micro‐hardness can be investigated. Mathematical models developed on the interface properties of scarf joint to make relationship between the bond shear strength and explosive loading ratio. To check the adequacy of developed models, mechanical properties of interface, such as bond shear strength was predicted and compared with actual values in explosive cladding process. The results show reasonable agreement with theoretical predictions. Consequently, mathematical model which is based on scarf joints, can predict bond shear strength of cladding metals under desired explosive loading and flyer plate thickness.  相似文献   

6.
6061 T0 aluminum alloy was joined to 6061 T0 aluminum alloy by explosive welding. This is a process in which the controlled energy of a detonating explosive is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored to produce both wavy and straight interfaces.

A three-pronged study was used to establish the conditions for straight weld formation: (a) analytical calculation of the domain of weldability, in which the Szecket–Mayseless (Mater. Sci. Eng. 57 (1983) 149) criterion was successfully used; (b) characterization of the explosive welding experiments carried out under different conditions, and (c) 2D finite differences simulation of these tests using the explicit Eulerian hydrocode Raven with a Johnson–Cook constitutive equation for the Al alloy. The numerical simulation and the analytical calculations confirm the experimental results and explain the difficulties met for obtaining a continuous straight interface along the entire weld.  相似文献   


7.
通过爆炸焊接法制备TA2/3A21/AZ31B三层复合板,利用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)和万能试验机对复合材料的界面、金相组织和力学性能进行测试与分析。实验结果表明:通过一次爆炸焊接制备的TA2/3A21/AZ31B复合材料,其抗拉强度约为303 MPa,屈服强度约为233 MPa,断后伸长率约为9.7%;在钛/铝界面与铝/镁界面均形成爆炸焊接特有的波状结构,界面处分别形成了厚度约5 μm的Ti-Al扩散层和30 μm的Al-Mg扩散层,其剪切强度分别为132.6 MPa和116.3 MPa。与TA2/AZ31B复合材料相比较,该复合材料的力学性能有较大提升。  相似文献   

8.
The physical nature of the formation of wavy interfaces under extreme dynamic loading conditions typical for explosive welding was established. It was shown that such surfaces arise through interaction between the shear and rotational modes of metal plastic flow realized at the macro-, meso-, and microlevels.  相似文献   

9.
In this study, Ti–6Al–4V and Al plates were joined by explosive welding at various explosive loads. Tensile-shear, bending, hardness, microstructure and corrosion behaviours of the explosively joined samples were investigated. At the end of the tensile-shear tests carried out according to ASTM D 3165-95 standard, no seperation was observed in the interfaces of the joined samples. The results of the bending tests also showed no sign of any distinctive seperation, crack and tear in the interfaces. The highest hardness values were measured in regions next to interfaces. The optical microscope and SEM examinations revealed that an increment in wavelength and amplitude was observed with increasing explosive load. It is seen from the corrosion test results that materials loss was high at the beginning of the corossion tests but the rate of material loss decreased later on. Furthermore, increasing deformation with increasing explosive load increased the materials loss in corrosion tests.  相似文献   

10.
CP-Ti/X65-pipe-steel bimetallic sheet was fabricated by explosive welding and hot rolling (W&R). Trace of the wavy CP-Ti/X65 interface formed from explosive welding was observed along the straight CP-Ti/X65 interface of bimetallic sheet fabricated by W&R. The microstructure and component analysis showed the following. (i) The cross-section of the X65 zone consisted of a 2–5 μm-wide Ti diffusion layer next to the interface, a 150–200 μm-wide decarbonization layer, and the rest area with a banded structure morphology. (ii) There were numerous voids and a slight C element enrichment at the interface. (iii) The section of the CP-Ti zone consisted of a 10–50 μm-wide Fe diffusion zone next to the interface, a residual adiabatic shear band zone next to Fe diffusion zone, and the rest region composed of the α-Ti microstructure. The micro-hardness profile across CP-Ti/X65 interface was measured. The variation patterns of the mechanical properties of the bimetallic sheet in the thickness direction were obtained from stratified tensile tests. The shear test proved that the CP-Ti/X65 bimetallic sheet produced by W&R had acceptable shear bond strength. The microstructure and alloy element distribution across the TA1/X65 interfaces of as-welded, heat treated and extruded TA1/X65 bimetallic sheets were studied and compared.  相似文献   

11.
Explosive welding is one of the joining techniques which employs high energies derived from explosives to join materials with similar and dissimilar properties. In this paper, the weldability criteria which should be met to achieve good welds were calculated for aluminum–copper joints. Different morphologies for welding interface (straight, wavy and melted layer) were obtained with changing welding parameters. Results on the microstructure, micro-hardness and tensile-shear tests were reported. Tensile-shear test results indicate that shear bond strength increases with increasing explosive ratio. However, shear bond strength decreases when the explosive ratio exceeds R = 2.2 due to the formation of brittle intermetallics at the interface. This knowledge may be utilized for establishment of a relation between microstructure and properties in the process of manufacturing.  相似文献   

12.
The present paper proposes an approach to characterizing fibre/matrix (F/M) interface in carbon/carbon (C/C) composites with respect to both modes of loading that may be expected: opening or shearing. Push-out and tensile tests were used. The former tests involve the shearing mode whereas the latter ones involve the opening one. Push-out tests use a diamond indenter to load the fibres. The interface sliding shear stress was obtained from the load-fibre displacement curve. The tensile tests were conducted on specimens having fibres oriented at 90° with respect to loading direction in order to preferentially open the interfaces. Interface opening strength was extracted from the composite tensile stress–strain behaviour. The specimens were examined under load and after ultimate failure by optical microscopy (OM). The mechanical properties of the F/M interfaces were then discussed.  相似文献   

13.
Combustion reaction welding, one promising method to weld ceramics and metals, was used to weld TiB2 and Mo. The results showed that the reacted products through combustion reaction were TiB2 and MoB when the Mo contents in reactants were 20 wt pct and 40 wt pct while there was Mo besides MoB and TiB2 when there were 60 wt pct and 80 wt pct Mo in reactants. Diffusion of elements occurred at the interfaces of the two substrates. The interfaces between the reacted and the two substrates were indistinct after being welded. The welding temperature strongly affected properties of the samples. The value of bending strength of the sample with 80 wt pct Mo in reactant welded at 1500℃ was the highest, 368.52 MPa. The highest value of shear strength among all the samples was that of the one with 40 wt pct Mo in reactant welded at 1500℃, 50.97 MPa.  相似文献   

14.
SA266-304爆炸复合板的三种结合界面   总被引:13,自引:3,他引:10  
运用JXA-8800M超大型电子探针对SA266—304爆炸复合板的结合界面进行了全面的分析测试,发现结合界面有大波状、小波状、微波状三类结合形式,其中以微波状为最佳.  相似文献   

15.
In this study, microstructural inhomogeneity and mechanical properties of explosive welded 2205 stainless steel/X65 pipe steel bimetallic sheets were investigated. The explosion-bonded 2205/X65 bimetallic sheets had good shear strength. The tensile shear fracture primarily occurred in the interior of X65 material and primarily exhibited dimple morphology. Fine crystal grains in the 0.5–2 μm range were found all over the narrow localized melted zone near the 2205/X65 interface, whereas a coarse columnar crystal structure growing along the perpendicular direction to the interface formed in the wider localized melted zone. Quasi-cleavage fracture morphology was observed in the coarse columnar crystal region after the stratified tensile test. The junction of the three regions near the interface with large differences in morphology was the weak point in the bimetallic sheet, where Y-shaped cracking easily occurred under a loading force. Stratified tensile test and micro-hardness tests for the explosively welded bimetallic sheet showed that severe hardening occurred in the 2205 cladding, and the most severe metal hardening occurred near the interface. Tests for 45° face bending and root bending tests were conducted under extreme conditions. The results showed that voids were prone to appeared in the peninsula and island morphologies near the interface.  相似文献   

16.
Combustion reaction welding, one promising method to weld ceramics and metals, was used to weld TiB¬2 and Mo. The results showed that the reacted products through combustion reaction were TiB¬2 and MoB when the Mo contents in reactants were 20 wt pct and 40 wt pct while there was Mo besides MoB and TiB¬2 when there were 60 wt pct and 80 wt pct Mo in reactants. Diffusion of elements occurred at the interfaces of the two substrates. The interfaces between the reacted and the two substrates were indistinct after being welded. The welding temperature strongly affected properties of the samples. The value of bending strength of the sample with 80 wt pct Mo in reactant welded at 1500℃ was the highest, 368.52 MPa. The highest value of shear strength among all the samples was that of the one with 40 wt pct Mo in reactant welded at 1500℃, 50.97 MPa.  相似文献   

17.
The specific problems of DSECs mechanical testing result from the particularities of these 3-D interconnected eutectic ceramics. First of all, 4-point bending tests ensure pure bending loading, whereas 3 PB tests only lead to a tensile and shear stress combination. Consequently, due to the 3-D microstructure of DSECs, interfaces between the various phases are subjected to a mixed (tensile and shear) loading which makes the interpretation of the results (strength) and of the fracture surfaces, rather difficult. For usual ceramics, biaxial flexure testing offers many advantages over 3- or 4-point beam-bending testing. The coaxial-ring test is free of edge influences (flaws): cracks initiate in the central area and propagate outwardly. However, in the case of DSECs, due to the presence of high internal thermal stresses (especially for ternary eutectics), interfaces can be subjected to a strong radial tensile and shear (near the free surface) stress combination. In the presence of the radial tensile stress resulting from biaxial loading, this internal thermal stress combination can lead to premature crack initiation leading to failure. Specimen machining through grinding leads to the formation of a strongly damaged layer. Annealing of this layer leads to the formation of a rough surface: slightly protruding phases and stress concentrations at the interfaces. The measured strength is ≈20% lower after annealing than that directly after grinding. Concerning the effect of the microstructure size, four representative sizes have been selected in the ≈10 µm to submicrometre range. A classical crack propagation criterion has allowed explaining the corresponding strength values.  相似文献   

18.
5 mm-Thick dissimilar AA2024-T3 and AA7075-T6 aluminum alloy sheets were friction stir lap welded in two joint combinations, i.e., (top) 2024/7075 (bottom) and 7075/2024. The influences of process conditions (welding speed and joint combination) on defects (hook and voids) features and mechanical properties of joints were investigated in detail. It was found that the hook deflects largely upwards into the stir zone (SZ) at lower welding speeds (50, 150 mm/min) in both combinations. The process conditions significantly affect the hook geometry which in return affects the lap shear strength. In all 2024/7075 joints, voids appear and the joints fracture from the tip of hook on AS along the SZ/TMAZ (thermomechanically affected zone) interface in lap shear test (tensile fracture mode). In 7075/2024 joints, the hook on RS horizontally extends a large distance into the bottom stir zone at higher welding speeds (225, 300 mm/min). The joints fracture in three modes: shear fracture along the lap interfaces, tensile fracture and the mix fracture of both. In both joint combinations, the lap shear strength generally increases with the increase of welding speed. 7075/2024 Joints show higher failure load than 2024/7075 joints at lower welding speeds while the opposite result appears at higher welding speeds.  相似文献   

19.
Titanium alloy (Ti6Al4V) and Iow carbon steel (LCS) were joined by explosive welding method using different ratios of explosive. Some metallurgical properties of joined samples were investigated. Joined samples were examined by means of optical microscope, scanning electron microscope (SEM) and tensile-shearing tests. Bending, tensile, hardness and corrosion behaviour of the samples were investigated. Separation was not occurred on the joining interface after tensile-shearing and bending tests. It is seen that hardness of both plates were increased with increasing explosive.It is found that increasing explosive ratio leads to an increase in corrosion. It is also found that corrosion rate was high at the beginning of the experiment but the rate of the corrosion decreased subsequently during the experiment.  相似文献   

20.
1.IntroductionIn order to join metals preserving their propertiesand to join metals having different properties,solid-statewelding methods are used[1].Explosive welding is a solid-state process in which controlled explosion forces to jointwo or more materials together under high pressures[2~5].It is used to joint directly a wide variety of similar or dis-similar metals that cannot be joined by any other weld-ing or bonding technique[6~8].The parameters of thesystem include:(1)the explosive cha…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号