首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In microcellular foaming process, the glass transition temperature (Tg) of polymer determines foaming temperature and has an effect on the other physical properties of polymer. In thisstudy, an evaluation of the current state of understanding for Tg was reviewed. Inaddition, we focused on the establishment and advancement of three main widely-used models that predict Tg (i.e. Chow model, Cha-Yoon model and Condo - Sanchez model). The comparisons of the three Tg-prediction models, with attention being given to their ownadvantages, disadvantages and scopes of application provide a reference for the further study.  相似文献   

2.
Even though common spray drying has been widely used for drying food and related products, the effect of drying conditions of supercritical CO2 spray drying on the particle sizes of dried products has not been well studied. The objective of this study was to study the effect of drying conditions and design parameters on the particle sizes of biomaterials dried with supercritical CO2 spray drying. The ethyl cellulose (EC) microparticles were prepared with supercritical CO2 as the dry medium using an experimental spray-drying apparatus. This research studied the influences of spray nozzle diameter, mass ratio of gas to liquid, solution concentration, temperature, and pressure on the physical characteristics of ethyl cellulose microparticles. The results indicated that the average size of the dried particles ranged from 1.07 to 9.84 µm. The spray nozzle with 8-mm diameter produced smaller microparticles with narrower distribution than the 4-mm spray nozzle. The average particle size increased with the increase of the ratio of gas to liquid. Also, the average size and distribution of the microparticles increased with the rise of temperature and solution concentration but decreased with the increase of pressure.  相似文献   

3.
Solubility and diffusivity of supercritical CO2 in poly(l-lactide)-hydroxyapatite (PLLA-HA) and poly(d,l-lactide-co-glycolide)-hydroxyapatite (PLGA-HA) composite materials were measured using a magnetic suspension balance at a temperature of 313 K and a pressures range of 10-30 MPa. The effect of the HA concentration on the solubility and diffusivity was investigated by varying filler content in the range of 0-50 wt%. For the PLLA-HA composites the solubility decreases with the increase of filler concentration. Diffusivity of the gas in the substrate is also lower as the HA content increases. In the case of PLGA-HA composites, small filler content favors the solubility and diffusivity of CO2 due to incomplete wetting of the solid particles by the polymer. As the amount of HA increases solubility decreases. The results suggest that dense CO2 could be used as a ‘green’ processing agent for composite biomaterials when organic solvents or high temperatures should be avoided.  相似文献   

4.
Hongliu Sun 《Polymer》2005,46(20):8872-8882
A method is reported to improve creep resistance in tension for polytetrafluoroethylene (PTFE) and modified PTFE (M-PTFE). PTFE and M-PTFE from different sources were annealed in air, N2 or supercritical CO2 (scCO2) at a range of temperatures, pressures and time intervals. Annealing PTFE in scCO2 increases crystallinity from 9 to 53%, depending on the material and annealing conditions. No corresponding increase occurs for samples annealed in air or N2. In comparison to as-received PTFE, significant improvements in tensile creep resistance (18-60%) are observed also dependent upon the material and annealing conditions. For a given temperature and duration, the increase in PTFE tensile creep resistance after annealing in air or N2 is greater than after annealing in scCO2 despite the higher crystallinity for post-scCO2 processed PTFE. Density measurements indicate that the effect of increased crystallinity is counterbalanced by scCO2-generated microvoids, particularly at higher pressures, leading to smaller creep resistance. In contrast, thermal annealing in air or N2, which does not significantly change the density or enhance the crystallinity of PTFE or M-PTFE, yields better tensile creep resistance. The detailed morphological origin of improved resistance to tensile creep is unknown, but stress relief by thermal annealing is evident.  相似文献   

5.
Satoshi Yoda  Daniel Bratton 《Polymer》2004,45(23):7839-7843
The direct synthesis of poly(l-lactic acid) (PLLA) from an l-lactic acid oligomer has been performed in supercritical carbon dioxide (scCO2) using an esterification promoting agent, dicyclohexyldimethylcarbodiimide (DCC), and 4-dimethylaminopyridine (DMAP) as a catalyst. PLLA within Mn of 13,500 g/mol was synthesised in 90% yield at 3500 psi and 80 °C after 24 h. The molecular weight distribution of the products was narrower than PLLA prepared with melt-solid phase polymerisation under conventional conditions. Both DCC and DMAP showed high solubility in scCO2 (DCC: 7.6 wt% (1.63×10−2 mol/mol CO2) at 80 °C, 3385 psi, DMAP: 4.5 wt% (1.62×10−2mol/mol CO2) at 80 °C, 3386 psi) and supercritical fluid extraction was found to be effective at removing excess DMAP and DCC after the polymerisation was complete. We show that DCC and DMAP are effective esterification promoting reagents with further applications for condensation polymerisations in scCO2.  相似文献   

6.
Polyamide-b-ethylene (Pebax) is a promising material for membrane-based gas separation application with excellent CO2 capturing potential. Pebax is a rubbery elastomer which offers good mechanical support with its hard crystalline phase and excellent gas transport through its amorphous polyether phase. This review article includes recent advances in Pebax based membrane synthesis, solvent selection for membrane synthesis, compatible fillers with Pebax matrix and the improved gas separation performance of the prepared membranes. The literature review shows that Pebax based membranes are a good candidate for separation of CO2 from flue gases and can be used for commercial applications.  相似文献   

7.
Poly(acrylic acid)/nylon6 and polystyrene/nylon6 blends were prepared using supercritical CO2 as substrate-swelling agent and monomer/initiator carrier. Both supercritical CO2/nylon6 binary system and SC CO2/monomer/nylon6 ternary system were studied. Virgin nylon6 and synthesized blends were characterized through differential scanning calorimetry, infrared spectroscopy, and polarizing microscopy. Supercritical CO2-induced crystallization was found in modified nylon6.  相似文献   

8.
For the first time, the possibility of dissolution of spent nuclear fuel from a nuclear power plant in liquid and supercritical carbon dioxide was demonstrated. As shown by the example of spent nuclear fuel, the dissolution and the extraction of actinides and fission products by solutions of tributyl phosphate and nitric acid adducts TBP(HNO3)1.8 in carbon dioxide can be used as one of the stages of spent nuclear fuel reprocessing.  相似文献   

9.
Supercritical CO2 fluids (SCF CO2) assisting melting of poly(vinylidene fluoride) (PVDF) and the SCF CO2 pressure affecting surface and bulk morphology, melting and crystallization of PVDF were investigated by means of SEM, AFM, FTIR, WAXD, DSC and SAXS. Three SCF CO2 conditions at 84, 283, and 476 atm all at 140 °C for 30 min were studied. Morphological changes, induced by melting of PVDF under SCF CO2 and recrystallization during depressurization of CO2, were found. The level of the CO2-assisted melting of PVDF was found to increase with increasing pressure. SEM and AFM images showed that the 84 atm of CO2 assisted melting on the surface of PVDF film while both 283 and 476 atm of CO2 gave rise to melting of the whole film. FTIR spectra and WAXD patterns found that the hot-pressed PVDF film exhibited predominant α-crystalline form, which is one of the reported four crystalline forms including α, β, γ, and δ forms, and did not transform to other crystalline form(s) upon the SCF CO2 treatments although they lowered the bulk crystallinities of PVDF. SEM images showed that the SCF CO2 treatments at 283 and 476 atm resulted in foam formations in PVDF, with smaller foam cells resulting from the lower pressure treatment. SAXS data found that the thickness of crystalline layer in the lamellar stacks increased while that of amorphous layers insignificantly changed after SCF CO2 treatments at 283 and 476 atm, as compared with untreated PVDF. SAXS and DSC data suggested the presence of a bimodal distribution of crystal size of PVDF after SCF CO2 treatments.  相似文献   

10.
In this study, the preparation of organoclays via a new process using supercritical carbon dioxide is described. This method turns out to be very efficient with various surfactants, in particular nonwater-soluble alkylphosphonium salts. The influence of the surfactant as well as of the clay nature on the thermal stability of the organoclay is evaluated by thermogravimetric analysis. Phosphonium-based montmorillonites are up to 90 °C more stable than ammonium-based montmorillonites. Moreover, the use of hectorite adds another 40 °C of thermal stability to the phosphonium-modified clays. These organomodified clays have been melt-blended with polyamide 6 and morphology as well as fire properties of the nanocomposites are discussed, in terms of influence of the stability of organoclays. For the first time, comparison of nanocomposites based on clay organomodified by ammonium and phosphonium salts of the very same structure is reported.  相似文献   

11.
In this work, supercritical CO2 extraction has been carried out on a traditional Chinese herb of Baizhu under pressure of 15-45 MPa, temperature of 40-60 °C, mean powder size of 0.167-0.675 mm, and extraction time of up to 180 min. The maximum extraction yield obtained in 5 h is about 6.76 × 10−2 g per gram raw materials at 60 °C and 45 MPa. The extraction process is correlated by means of five different mathematical models. The evaluation of these models against experimental data shows that among these models the Sovová model performs the best with an overall average absolute relative deviation of 1.62%, followed by Crank and Naik models, finally the Barton and Martínez models. From the Sovová model, the mass transfer coefficient in solid or fluid are obtained and they are varying in the ranges of 4.02-6.14 × 10−8 m/s and 0.88-2.87 × 10−9 m/s, respectively. These results suggest that solute diffusion in solid matrices and solute mass transfer in fluid are both important in affecting the supercritical CO2 extraction process of Baizhu.  相似文献   

12.
13.
Drying is the most critical elaboration step of large monolithic and crack-free silica aerogel plates. In the present work, we are studying the supercritical CO2 drying and more precisely the first step, here called the supercritical washing step. This phase consists of replacing the liquid phase contained in the nanopores with supercritical CO2. Within this study, this step is governed by molecular diffusion through the gels. These phenomena were investigated experimentally in order to estimate the duration of the washing step. The experimental results were then fitted with an analytical mass transfer model to identify the effective diffusion coefficient.  相似文献   

14.
Supercritical carbon dioxide (SC-CO2) was employed to extract oil rich in omega-3 fatty acids (FAs) from chia seeds, and the physicochemical properties of the oil were determined. A central composite rotatable design was used to analyze the impact of temperature (40 °C, 60 °C and 80 °C), pressure (250 bar, 350 bar and 450 bar) and time (60 min, 150 min and 240 min) on oil extraction yield, and a response surface methodology (RSM) was applied. The extraction time and pressure had the greatest effects on oil. The highest oil yield was 92.8% after 300 min of extraction time at 450 bar. The FA composition varied depending on operating conditions but had a high content of α-linolenic acid (44.4-63.4%) and linoleic acid (19.6-35.0%). The rheological evaluation of the oils indicated a Newtonian behavior. The viscosity of the oil decreased with the increase in temperature following an Arrhenius-type relationship.  相似文献   

15.
Supercritical carbon dioxide (SC-CO2) extraction of flavonoids from pomelo (Citrus grandis (L.) Osbeck) peel and their antioxidant activity were investigated. Box-Behnken design combined with response surface methodology was employed to maximize the extraction yield of flavonoids. Correlation analysis of the mathematical-regression model indicated that a quadratic polynomial model could be used to optimize the SC-CO2 extraction of flavonoids. The optimal conditions for obtaining the highest extraction yield of flavonoids from pomelo peel were a temperature of 80 °C, a pressure of 39 MPa and a static extraction time of 49 min in the presence of 85% ethanol as modifier. Under these conditions, the experimental yield was 2.37%, which matched positively with the value predicted by the model. Furthermore, flavonoids obtained by SC-CO2 extraction showed a higher scavenging activity on hydroxyl, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals than those obtained by conventional solvent extraction (CSE). Therefore, SC-CO2 extraction can be considered as a suitable technique for the obtainment of flavonoids from pomelo peel.  相似文献   

16.
Phase behavior data are presented for poly(methyl methacrylate) (PMMA: Mw= 15,000, 120,000) in supercritical solvent mixtures of carbon dioxide (CO2) and chlorodifluoromethane (HCFC-22). Experimental cloud point curves, which were the phase boundaries between single and liquid-liquid phases, were measured by using a high-pressure equilibrium apparatus equipped with a variable-volume view cell at various CO2 compositions up to about 63 wt% (on a polymer-free basis) and at temperatures up to about 100 °C. The cloud point curves exhibited the characteristics of a lower critical solution temperature phase behavior. As the CO2 content in the solvent mixture increased, the cloud point pressure at a fixed temperature increased significantly. Addition of CO2 to HCFC-22 caused a lowering of the dissolving power of the mixed solvent due to the decrease of the solvent polarity. The cloud point pressure increased with increasing the molecular weight of PMMA.  相似文献   

17.
Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl2) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N2 adsorption–desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406–751 m2·g−1. Furthermore, An-CTF-10-500 had a capacitance of 589 F·g−1, remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO2 adsorption capacity up to 5.65 mmol·g−1 at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO2 uptake.  相似文献   

18.
Essential oil was extracted from yarrow flowers (Achillea millefolium) with supercritical CO2 at pressure of 10 MPa and temperatures of 40–60 °C, and its composition and yield were compared with those of hydrodistillate. The yield of total extract, measured in dependence on extraction time, was affected by extraction temperature but not by particle size of ground flowers. CO2-extraction of cuticular waxes was lowest at 60 °C. Major essential oil components were camphor (26.4% in extract, 38.4% in distillate), 1,8-cineole (9.6% in extract, 16.2% in distillate), bornyl acetate (16.7% in extract, 4.3% in distillate), γ-terpinene (9.0% in extract, 9.4% in distillate), and terpinolene (7.6% in extract, 3.9% in distillate). Compared to hydrodistillation, the yield of monoterpenes was lower due to their incomplete separation from gaseous CO2 in trap but the yield of less volatile components like monoterpene acetates and sesquiterpenes was higher. Hydrolysis of γ-terpinene and terpinolene, occuring in hydrodistillation, was suppressed in supercritical extraction, particularly at extraction temperature of 40 °C.  相似文献   

19.
The major advantage of using supercritical carbon dioxide (CO2) as a solvent in polymer processing is an enhancement in the free volume of a polymer due to dissolved CO2, which causes a considerable reduction in the viscosity. This allows spraying the polymer melt at low temperatures to produce micron size particles. We have used supercritical CO2 as a solvent for the generation of particles from poly(ethylene glycol) (PEG) of different molecular weights. Since PEG is a hydrophilic compound, it is a most commonly used polymer for encapsulating a drug. PEG particles with different properties may allow keeping a good control over the release of the drug. It has been possible to produce particles with different size, size distribution, porosity and shape by varying various process parameters such as molecular weight, temperature, pressure and nozzle diameter. A flow and a solidification model have been applied in order to have a theoretical insight into the role of different parameters.  相似文献   

20.
The aim of this study was to use a benign technique for the sterilization of ultra-high molecular weight polyethylene (UHMWPE), which is broadly used in artificial joints. The feasibility of using supercritical (SC) CO2 modified with additives such as ethanol, water and hydrogen peroxide was assessed for the sterilization of UHMWPE. The operating conditions and the amount of modifiers were changed to achieve a complete inactivation of bacteria such as spores and fungi. Complete inactivation of all microorganisms including spores was achieved within 2 h at 37 °C and 170 bar CO2, when at least 25 μL hydrogen peroxide was mixed with equal volume of other modifiers. The physio-chemical properties of the polymer were tested for untreated, as well as treated samples. Mechanical strength and elongation of the polymer were measured using an Instron and the oxidation of the polymer was measured using FTIR. Both the physical and chemical properties of the polymer were unchanged after the SC CO2 sterilization technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号