首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
用机械合金化工艺(MA)和放电等离子烧结工艺(SPS),制备出纳米SiC(平均直径约30nm)弥散分布的Bi2Te3热电材料,并研究了纳米SiC颗粒弥散对Bi2Te3性能的影响。实验采用MA合成纳米SiC分散Bi2Te3粉末,用SPS制备块体材料。XRD分析表明用MA和SPS成功制备了Bi2Te3合金,随着纳米SiC含量的增加,材料的颗粒尺寸减小,表明纳米SiC有抑制颗粒长大的作用。电学性能测试发现少量(体积分数≤1.0%)纳米SiC的加入对Bi2Te3电学性能有很大影响:虽然随着SiC含量的增加电导率有所降低,但Seebeck系数得到了提高。当加入0.1%SiC时,Seebeck系数和功率因子达到最大值,均高于纯Bi2Te3试样,随着SiC含量进一步增加,Seebeck系数和功率因子降低。显微硬度随着纳米SiC含量的增加也得到提高。综合实验结果表明极少量纳米SiC颗粒的加入可以提高Bi2Te3的电学性能和力学性能。  相似文献   

2.
采用惰性气体保护蒸发-冷凝(IGC)法制备了纳米Bi及Te粉末,结合机械合金化(MA)和放电等离子烧结(SPS)工艺,在不同烧结温度(663~723K)下制备出了n型Bi2Te3细晶块体材料。利用X射线衍射分析(XRD)确定机械合金化粉末和SPS烧结块体的物相组成,借助TEM观察了粉体的粒度及形貌,SEM观察了块体试样断口显微组织结构。在323~473K温度范围内测试了烧结块体的电热输运特性。实验结果表明:纳米粉末合成的细晶Bi2Te3与粗晶材料相比,电输运性能变化不大,热导率大幅度降低,在423K时,热导率由粗晶材料的1.93W/m·K降至1.29W/m·K,并且在693K烧结的细晶块体的无量纲热电优值(ZT)在423K时取得最高ZT值达到0.68。  相似文献   

3.
结合机械合金化(MA)与放电等离子烧结(SPS)工艺制备了NiSe_2块体热电材料。研究了MA球磨时间和SPS烧结温度对NiSe_2热电材料的物相、显微组织以及电热传输性能的影响。结果表明:当转速为425 r/min,球磨40 h后合成了约45 nm的NiSe_2纳米粉体。NiSe_2粉体是一种直接禁带半导体,禁带宽度为2.653 eV,其块体呈n型导电特征。烧结温度为773 K时,NiSe_2块体材料在323 K获得最大功率因子101μW·m~(-1)·K~(-2),热导率为7.5 W·m~(-1)·K~(-1),最大ZT值为0.0045。  相似文献   

4.
采用机械合金化(MA)在球磨转速为250r/min~350r/min条件下,制备颗粒直径为1μm~4μm的CoSb3粉末,然后利用放电等离子烧结(SPS)得到单相CoSb3块体材料.主要讨论了MA时间、转速以及SPS烧结条件对CoSb3相形成的影响以及MA机理.结果表明,在MA时间为36h时有大量CoSb3生成,但仍存在少量Sb和Co,MA时间过长会有大量CoSb2相生成,说明机械合金化时间存在一个最佳值;在SPS烧结过程观察到有压力突增现象,机械合金化时间越长的样品压力突增的温度点越高.本实验从非平衡热力学观点,解释了利用MA-SPS工艺制备CoSb3的过程.  相似文献   

5.
利用高分子网络凝胶法和放电等离子烧结技术(SPS)制备出高致密的Ca3Co4O9/Ag热电陶瓷复合材料.采用X射线衍射法表征了材料的相组成及其织构化程度,用SEM观察了粉体形貌和陶瓷断口的显微结构,并研究了Ag复合量对材料的室温热电性能的影响.研究结果表明,利用高分子网络凝胶法和SPS相结合的工艺有利于单质Ag在基体中的分布,使得基体中Ag相的粒径更小,分布更均匀.陶瓷复合材料的致密度均达到98%以上.虽然Ag颗粒的加入使Ca3Co4O9/Ag复合材料的Seebeck系数降低,但由于电导率显著提高,从而使材料的功率因子提高.  相似文献   

6.
对机械合金化SiC/MoSi2的先驱粉体及随后反应烧结制备SiC/MoSi2复合材料工艺研究表明:经机械合金化的先驱粉体主要成分为MoSi2。反应烧结温度在Si的熔点以上时,由于Si在MoSi2颗粒的表面的润湿铺展,导致烧结1h后的产物为Mo5Si3C,MoSi2,SiC和单质Si;在Si的熔点以下时,对过渡相Mo5Si3C的产生有一定抑制作用,反应烧结过程中只有少量过渡相Mo5Si3C出现;通过1600℃真空热处理2h可以基本上消除Mo5Si3C相,得到只有MoSi2和SiC两相的均匀材料。  相似文献   

7.
Ti3SiC2具有优良的性能,作为复合材料增强相可以进一步提高材料性能。提出制备Ti3SiC2增强复合材料的一种新思路,即利用放电等离子体烧结(Spark Plasma Sintering,简称SPS)原位反应烧结制备Ti3SiC2增强纳米复合材料。利用SPS技术已经成功制备了Ti5Si3/TiC/Ti3SiC2,TiSi2/SiC/Ti3SiC2,SiC/Ti3SiC2等纳米复合材料,并且考察了材料的显微结构和力学性能。  相似文献   

8.
CoSb3纳米晶块体热电材料的制备研究   总被引:6,自引:0,他引:6  
采用机械合金化.放电等离子烧结工艺(MA-SPS),在200℃~600℃之间制备了纳米晶CoSb3合金块体材料。采用XRD和TEM对材料的相组成和微观组织进行了测试分析。实验结果表明,烧结前粉末为高能球磨得到的平均晶粒尺寸为20nm~35nm的纳米晶CoSb3粉末,SPS烧结后CoSb3合金块体的平均晶粒尺寸小于100nm,其致密度达到了91.3%~99.6%。CoSb3块体的晶粒尺寸随着烧结温度的降低而减小,而密度却随着烧结温度的升高而增加。CoSb3纳米晶块体热电材料的制备机理是MA使粉末晶粒细化到纳米级,放电等离子烧结的快速、短时、低温和特殊烧结机理显著抑制了烧结时的晶粒长大。  相似文献   

9.
研究了TiNiSn基Half-Heusler热电化合物的机械合金化(MA)结合放电等离子体烧结(SPS)制备工艺.实验以Ti、Ni、Sn单质粉末为原料,研究了MA和SPS过程中的化学反应与相组成的变化以及所制备的块体材料的电学性能,获得以下主要结果:(1)MA处理后的粉末经过SPS固化后可转变为TiNiSn化合物,但是MA难以直接合成TiNiSn化合物粉末,其原因在于Ni和Sn在球磨过程中较容易生成化合物Ni_3Sn_4;(2)优化MA时间和适量增加Ti的含量有利于提高SPS样品中的TiNiSn化合物含量,本研究获得的TiNiSn相纯度高达90%;(3)最佳条件下制备的TiNiSn化合物块体材料呈n型,测试范围内其功率因子最高可达到1380 mW/m·K~2.  相似文献   

10.
采用包裹法和机械合金法制备了SiC:Cu为20:80(体积比)的SiC/Cu复合材料。采用XRD,SEM及EDAX能谱对粉体和烧成样品的物相、断口显微形貌及断口物质成分进行了表征。结果表明:采用包裹法在制备复合粉体过程中出现Cu2O,其含量在烧结过程中减少,包裹法制备的烧成样品SiC颗粒和Cu结合成“核.壳”结构,两相分布比机械合金法更均匀,界面结合更好,强度更高。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号