共查询到20条相似文献,搜索用时 62 毫秒
1.
针对前馈神经网络难以处理时序数据的问题,提出将双向循环神经网络(BiRNN)应用在自动语音识别声学建模中。首先,应用梅尔频率倒谱系数进行特征提取;其次,采用双向循环神经网络作为声学模型;最后,测试不同参数对系统性能的影响。在TIMIT数据集上的实验结果表明,与基于卷积神经网络和深度神经网络的声学模型相比,识别率分别提升了1.3%和4.0%,说明基于双向循环神经网络的声学模型具有更好的性能。 相似文献
2.
数字语音信号包络提取算法研究 总被引:4,自引:0,他引:4
在许多领域,比如通讯、自动测试与控制、机械故障检测与诊断,特别是在语音信号处理与识别等领域中,从原始信号中提取包络信息注往是十分重 相似文献
3.
该文阐述了语音信号的特点,语音识别过程及技术,重点讨论了例谱技术及其在语音信号特征提取中的应用,并将自组织映射神经网络应用到语音识别中,提出了网络模型。 相似文献
4.
文章提出了一种抗噪声的语音特征。首先让语音信号的功率谱通过一组带通滤波器,再计算各滤波器输出的差分值。理论分析和实验一致证明,以此作为语音信号的特征,可以大幅度提高语音识别系统在噪声环境中的性能。 相似文献
5.
为了消除语音信号分离中仍存在的部分混叠声音,提出一种基于小波消噪和独立分量分析(ICA)结合的信号分离方法。该方法将小波变换和独立分量分析结合,利用小波变换的去噪作用,滤除原始语音信号中的噪声后作为ICA的输入信号,采用FastICA算法在小波域进行独立分量分析,对输入信号实施分离。实验结果表明,该方法大大调高了传统独立分量分析对语音信号的分离效果。 相似文献
6.
对时变性强的非平稳汉语语音信号,建议采用变时-频复子波分析方法提取汉语语音信号的幅度谱、相位谱、基音周期及共振峰信息。选择有n阶消失矩及良好的时频局域化特性的复高斯子波提取汉语语音信号的幅度谱和相位谱,实验结果表明,该方法提取的语音信号的幅度谱、相位谱和子波变换谱表征了汉语语音的音节包络、细节包络及声调,区分了清、浊音,并准确提取了语音信号的动态基音周期、估计出共振峰。这对汉语语音特征提取和识别提供了一种新的思路。 相似文献
7.
8.
赵锋 《数字社区&智能家居》2008,(8):774-776
针对语音识别的特点,对BP神经网络在语音识别技术中的应用进行了探索性研究,进而结合人工智能领域较为有效的方法——遗传(GA)算法,针对传统BP算法识别准确率高但训练速度慢的缺点,对BP网络进行改进,构建了一种基于遗传神经网络的语音识别算法(GABP),并建立相应的语音识别系统。仿真实验表明,该算法有效地缩短了识别时间,提高了网络训练速度和语音的识别率。 相似文献
9.
ZHAO Feng 《数字社区&智能家居》2008,(22)
针对语音识别的特点,对BP神经网络在语音识别技术中的应用进行了探索性研究,进而结合人工智能领域较为有效的方法——遗传(GA)算法,针对传统BP算法识别准确率高但训练速度慢的缺点,对BP网络进行改进,构建了一种基于遗传神经网络的语音识别算法(GABP),并建立相应的语音识别系统。仿真实验表明,该算法有效地缩短了识别时间,提高了网络训练速度和语音的识别率。 相似文献
10.
近年来,随着我国科学技术的不断深入与发展,神经网络逐渐与语音识别技术联系的越来越密切。在传统的语音识别技术中,模板匹配法是其主要的操作方法,而在现代的语音识别技术中,神经网络已成为主要的发展趋势。神经网络技术主要模拟了人类的神经元活动原理,将人类所特有的自主学习、想象能力综合到了语音识别系统中,为语音识别的发展开辟了一条新的途径。本文我们将综合具体事例简要分析深度学习神经网络与语音识别系统的结合。 相似文献
11.
BP神经网络应用于孤立词语发音识别的研究 总被引:1,自引:1,他引:1
介绍了BP神经网络的学习规则和用于语音识别的基本原理,建立了一个用于常用孤立词语音识别的BP神经网络,选择声道反射系数为语音识别的特征值,建立了网络的训练样本集,对网络进行了训练;用MATLAB进行了识别仿真,表明能较好地实现孤立词语音识别. 相似文献
12.
卷积神经网络(Convolutional Neural Networks,CNN)是目前流行的语音识别模型之一,其特有卷积结构保证了语音信号时域和频域的平移不变性。但是CNN存在着对语音信号建模能力有所不足的问题。为此,将链接时序准则(CTC)应用在CNN结构中,构建端到端卷积神经网络(CTC-CNN)模型。同时,引入残差块结构,提出一种新的端到端深度卷积神经网络(CTC-DCNN)模型,并利用maxout激活函数对其进行优化。通过TIMIT和Thchs-30语音库测试实验,结果表明在中英文识别中,采用该模型比现有卷积神经网络模型,准确率分别提高约4.7%和6.3%。 相似文献
13.
针对BP神经网络在高维数据分类中存在训练时间长的缺点,提出一种新的多神经网络分类模型,该模型采用自组织特征映射(SOFM)网络对训练样本集进行无监督聚类,通过优化竞争层神经元权值,并以此训练BP神经网络实现数据分类.最后对自由手写数字样本进行识别,仿真实验表明,这一模型具有较强的分类能力和泛化能力. 相似文献
14.
牛鞭效应是供应链运营管理中客观存在的现象。企业为了减少由实际需求和计划数量的偏差造成的生产不稳定,提高安全库存数量从而保证正常的生产活动,在此情况下需求逐级放大引发了牛鞭效应。精准预测是缓解牛鞭效应的重要手段,但是传统的时序预测在复杂的环境中并没有很好的预测效果。基于以上问题,从理论层面论证了需求预测、安全库存、牛鞭效应之间的关系,提出能够优化预测结果的ARIMA-BP模型。以某制造商企业近两年的产品订单数据为研究对象,分别用不同的预测模型对订单进行预测分析,再与该企业原预测模型下的牛鞭效应仿真结果进行对比。结果表明,ARIMA-BP的模型预测精度更高,能够有效地缓解牛鞭效应。 相似文献
15.
人工神经网络及其在化学领域中的应用 总被引:27,自引:13,他引:27
简化了人工神经网络的定义及分类,着重介绍了ANN中一种较经典的网络模型-BP网络模型的网络结构和学习原理,总结了ANN在化学领域中的应用,包括谱图分析,药物分子等。同时讨论了在使用ANN方法时应注意的几个问题,如隐层节点数目的确定等。 相似文献
16.
本文对神经网络语音识别中的语音特征提取、网络结构以及学习算法进行了初步的研究,提出了一种用于时特征矢量量化的简化和改进的自组织神经网络模型VQNN。VQNN中引入了动态规划法估计语音样本矢量的码本类中心初值并确定网络的初始权矩阵,可构造出256个量化等级的码本矢量。该方法具有较强的鲁棒性且矢量量化过程简单迅速。对28个地名的语音量化识别实验结果表明了这种量化方法对时识别的有性。 相似文献
17.
基于误差反馈的组合式人工神经网络的发电生产过程辨识 总被引:1,自引:0,他引:1
本文主要研究人工神经网络在辨识实际工业系
统中的应用.由于辨识的对象是一个动态系统,所以着重对人工神经网络在辨识工业生产过
程的动态特性作了分析.本文以发电生产过程为背景,针对不同负荷下发电生产工况的特点
,提出了用子神经网络分别辨识不同负荷下的发电生产过程.在考虑系统稳定的前提下,本
文提出引入误差反馈来训练人工神经网络辨识模型的方法. 相似文献
18.
在公开密钥密码体制传统分析方法的基础上,提出了用神经网络分析公开密钥密码体制的方法.利用二层BP网络,在所有单字符明文分组的空间中,进行了大量的实验,构造了RSA密码体制分析机,结果表明,该密码分析机可以达到较高的解码正确率. 相似文献
19.
提出一种新型的智能PID控制器。将前馈神经网络BP网络作用在弹性积分控制器上,在线调整控制器的参数,采用RBF神经网络作为辨识器在线辨识控制输出对控制输入对象变化的灵敏度信息,提高系统的控制精度。该智能控制器实现了整体性能优化和个别参数优化相结合的思想。通过MATLAB仿真,该新型控制器具有超调量低、鲁棒性好等控制效果。 相似文献
20.
阐述了基于神经网络LMBP算法的入侵检测方法,在对网络中的IP数据包进行分析处理以及特征提取的基础上,采用神经网络进行训练或判别,以达到对未知数据包进行检测的目的.由传统的BP算法与LMBP算法的分析与比较得到:LMBP算法解决了传统BP算法的收敛速度慢、易陷入局部最小的问题.实验结果表明,LMBP算法的学习速度快,收敛速度快,将这个算法应用于基于神经网络的入侵检测,效果良好,判别准确率高,为实现高效准确的入侵检测提供了一种有效的方法. 相似文献