首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
极限分析法计算有限范围土体土压力   总被引:10,自引:0,他引:10  
常规土压力计算均建立在半无限土体假定的基础之上 ,而对于有限土体一般仍沿用常规的朗肯、库仑土压力理论 ,这与实际情况有一定的差异。基于土的塑性上限理论 ,给出一种有限土体土压力的计算公式 ,并与朗肯土压力计算结果进行了对比分析  相似文献   

2.
深基坑开挖中有限土体土压力计算方法探讨   总被引:3,自引:0,他引:3  
相邻基坑之间(距离较近)的有限土体土压力的计算问题随着城市地下空间的发展越来越引起人们的重视,然而其相应的土压力计算方法很少有人进行研究,往往根据工程经验进行估计,本文从土压力基本原理出发,通过简单地推导提出了该种情况下土压力的计算方法,然后通过简单实例进行了分析。  相似文献   

3.
王军 《四川建筑》2011,31(2):83-83,85
挡墙为现浇混凝土,填土为有限土体土压力计算问题。  相似文献   

4.
周含川 《重庆建筑》2009,8(12):34-37
目前深基坑边坡工程常常会出现基坑边离相邻建筑较近或者基坑边为稳定且坡度较陡的岩石边坡.此时支挡结构承受的是有限范围土体的土压力。目前的研究也只针对较具体的某类有限填土形式进行了主动土压力计算推导。实际工程中往往出现情况更复杂的有限土体问题,本文基于主动土压力为三角形分布或高大挡墙的梯形分布条件下,推导了有限土体断面形状更通用有限土体主动土压力计算方法。同时指出在特定情况下,有限土体土压力并不一定比无限土体土压力小。希望给工程设计提供一定参考。  相似文献   

5.
有限土体主动土压力计算   总被引:6,自引:1,他引:6  
 建立在半无限土体假定基础上的朗肯、库仑土压力理论并不适用于有限土体土压力的计算。根据实际情况,建立有限土体土压力计算模型,基于极限平衡理论及平面滑裂面假定,在考虑土黏聚力及有限土体宽度的基础上,推导有限土体滑裂面剪切破坏角的数学表达式,并建立有限土体主动土压力计算公式。所建立的计算公式表明,有限土体滑裂面剪切破坏角不再是库仑土压力理论给出的定值45°+j/2,而是一个变量,与计算深度、土内摩擦角、土黏聚力及有限土体宽度有密切关系。通过算例分析发现,有限土体滑裂面剪切破坏角随深度增加成非线性增长;而与土黏聚力和有限土体宽度成负相关;随着土内摩擦角的增大,剪切破坏角先是减小,随后增大。最后,将有限土体土压力计算结果与朗肯土压力进行对比,证实了有限土体主动土压力计算公式的合理性。  相似文献   

6.
邵鹏  刘念武  房凯  黄栩  林强 《建筑施工》2021,43(4):691-695
为了研究邻近超深基坑群同步施工面临的有限土体土压力计算的问题,通过在任意开挖深度处取一土体单元,分析单元体受力情况,运用平衡方程和微分知识等方法,推导出在两基坑中间为有限土体这一条件下,有限土体主动土压力的表达式,以及考虑基坑开挖深度过大,上部土体可能出现的被动土压力的表达式,同时,结合有限元软件Plaxis,验证其合...  相似文献   

7.
基坑工程有限土体主动土压力计算分析研究   总被引:3,自引:0,他引:3  
李峰  郭院成 《建筑科学》2008,24(1):15-18
在深基坑工程中,拟开挖基坑距已有建筑物地下部分较近时,基坑支护体系承受的是有限土体的土压力,若根据Rankine理论计算,常导致计算土压力偏大,造成浪费。针对基坑工程中有限粘性土体的土压力计算问题,基于滑楔体平衡理论,本文推导了考虑土体变形情况的有限土体土压力计算模式,通过工程实例计算进行对比分析,提出了基坑工程中有限粘性土体土压力的计算方法,结果表明有限土体土压力分布模式及其量值与半无限土体土压力分布模式及其量值间存在显著差异,当有限土体宽度不大于坑深的0.75倍时,宜按有限土体土压力计算模式进行计算。  相似文献   

8.
有限土体主动土压力计算的土拱效应分析   总被引:3,自引:0,他引:3  
基于墙后土体为半无限土体假定的经典土压力理论不适用于有限土体土压力计算。分析了墙后有限土体的破坏模式及位移特征,并考虑应力偏转现象分析了有限土体中的成拱效应。在此基础上,基于水平薄层法分析了有限土体主动土压力分布特征,给出了有限土体主动土压力强度的理论计算方法。该方法可较好地考虑有限土体宽度及土拱效应对土压力分布造成的影响。与试验实测数据对比表明,相比经典土压力理论,该方法的计算值更接近于实测值,可供相关设计计算参考。对影响有限土体土压力分布的主要参数进行了初步研究,如土体计算宽度、土体黏聚力及内摩擦角。结果表明:不同参数取值并未改变有限土压力沿深度的分布规律;同一深度处,土压力值随计算宽度与土体摩擦角的增大而增大,但随土体黏聚力的增加而减小。  相似文献   

9.
随着地下空间开发的不断深入,城市密集区基坑群不断涌现,相邻基坑同步开挖时基坑间留有有限宽度土条的现象越来越普遍。采用微分体受力平衡的方法,基于极限平衡理论,利用力的平衡方程和微分方程,推导出两个相邻围护结构间有限土体土压力的计算公式。结合火车东站与有限元数值模拟研究发现,随着基坑开挖深度的增加,围护墙的侧向位移和桩身弯矩不断增大,基坑东西两侧围护墙分别在50.0 m和31.0 m深度处桩身弯矩达到最大值,在33.0 m深度处侧向位移达到最大值。A、B基坑的同时开挖,使坑间地表沉降产生叠加效应。土方开挖完成,地连墙上部大约15.0 m深度范围内的坑间有限土体土压力呈现被动土压力特征。  相似文献   

10.
在基坑支护工程的设计计算中,由于拟开挖基坑距离已有建筑物与开挖深度相比较小,基坑围护结构所承受的为有限宽度土体的土压力,若根据常规的土压力计算,一般会造成偏大的计算结果,造成不必要的浪费。针对基坑工程中有限宽度土体土压力的计算问题,基于极限分析法的上限定理,推导了有限宽度土体的土压力计算公式,并与经典朗肯土压力的计算结果进行了对比,结果表明:有限宽度土体的土压力分布模式和量值与经典的朗肯土压力分布模式和量值存在着明显的差异,应根据不同土质、有限土体的宽度与基坑的开挖深度之比来计算土压力。  相似文献   

11.
为了寻求一种简单明了且适应边界条件较广的土压力计算方法,引入土体半无限平衡理论,改进了库仑土压力理论。首先,假定了过墙踵点的假想直立墙背,基于半无限平衡条件的朗肯理论给出假想墙背的主动压应力,然后通过假想墙背与真实墙背之间楔形体的极限平衡分析,提出真实墙背的主动土压力计算方法。根据真实墙背的摩擦条件,分别推导出了两种条件下的计算公式。通过算例对比得出了本文方法的适用性,并分析了该方法的参数敏感性。计算结果表明:本文方法土压力值与用库仑理论计算值相比误差在±5%以内,满足工程的精度要求,且在计算参数正常取值范围内,较库仑土压力原理计算值较小,可以作为库仑主动土压力计算方法的一种等效计算法。  相似文献   

12.
为了研究基坑开挖对柔性挡土结构土压力空间分布规律的影响,进而为基坑的设计与安全防护提供相应依据,用ABAQUS建立基坑开挖的有限元模型,分析基坑开挖对挡土结构“单片墙”空间土压力的影响。考虑了不同刚度、有无支撑、不同开挖深度对挡土墙不同部位的土压力分布和挡土墙位移的影响,并将挡土结构三维土压力分布规律与二维数据进行了对比,验证了三维有限元模拟的必要性,对比了加支撑与否对基坑土压力空间分布的影响。结果表明:“单片墙”主动区土压力呈马鞍状分布,挡土结构后部土体的影响范围和下部土体的影响范围都约为2倍开挖深度;支撑结构极大地限制了墙后土体危险区域的范围,但是对墙下土体的限制作用并不是很明显。  相似文献   

13.
在上限定理的基础上,将墙后土体离散为三角形单元,在单元中构造线性速度场,根据相关联流动法则以及边界条件建立约束方程,引入数学规划方法寻求挡土墙土压力为三角形分布时的土压力系数的上限解。通过具体的算例说明该方法是一种有效的数值方法。  相似文献   

14.
为了减小经典库仑土压力理论与实际工程中竖向分层土压力之间的误差,在传统库仑土压力理论和有限土压力理论的基础上,考虑了非饱和土的强度特性,建立了挡土墙后竖向分层填土的静力学平衡关系,得到了竖向分层填土的主动土压力的计算公式.通过与现有理论对比分析,验证了本文理论的正确性.分别分析了填土性质参数及挡土结构几何参数对土压力的...  相似文献   

15.
在总结归纳土压力随变形发展规律研究现状的基础上,给出了一种新的考虑位移影响的土压力计算模型。提出被动区土压力计算修正系数η的取值范围;并提出计算中等代内摩擦角φD按抗剪强度相等原理分层计算土压力的方法。最后编制有限元程序进行计算和分析,计算结果表明:主动侧土压力计算值介于静止土压力与Rankine主动土压力之间,被动侧土压力小于Rankine被动土压力,并随变形的减小趋向于静止土压力。  相似文献   

16.
基坑开挖伴随应力状态改变对土压力的影响   总被引:11,自引:0,他引:11  
本文对基坑开挖引起地基土应力状态和地下水状态改变给土压力计算所带来的影响进行了分析,提出了应采用侧压减少试验和卸荷试验方法确定的强度指标来计算主、被动土压力,文中还提出了考虑地下水渗流影响的土压力计算方法。  相似文献   

17.
土压力的位移和时间效应   总被引:7,自引:0,他引:7  
首先 ,根据基坑开挖工程的特点 ,推导出考虑位移和时间效应的土压力计算公式 ,以便更好地模拟实际情况。其次 ,在弹性地基梁有限元计算程序的基础上 ,采用考虑位移和时间效应的土压力计算公式对土压力计算程序进行了修改以及对参数反演部分作了相应的修改。最后 ,在实际工程中进行了实用计算和分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号