共查询到18条相似文献,搜索用时 109 毫秒
1.
以LiNi1/3CO1/3Mn1/302为正极材料,采用共沉淀合成方法制备LaF3表面修饰LiNimCo1/3Mnm02正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明:经过LaF3表面修饰的LiNi1/3C01/3Mn1/302材料保持了LiNi1/3Co1/3Mn1/302层状结构,其中LaFs表面修饰量为0.59%时,在电压为2.75-4.50V范围内,以0.3mA/cm。电流密度下经恒电流充放电测试,其首次放电比容量为172.7mAh/g,经过50周充放电循环后放电比容量为163.5mAh/g,表现出较高的初始放电比容量和良好的抗过充电性能。 相似文献
2.
选用锰酸锂(Li Mn2O4)、复合镍钴锰酸锂(Li Ni1/3Co1/3Mn1/3O2)按不同比例混合作为正极,软碳作为负极材料,制备复合镍钴锰酸锂与锰酸锂混合型锂离子全电池(简称混合型锂离子全电池),选择质量分数为15%,35%的Li Mn2O4与Li Ni1/3Co1/3Mn1/3O2混合作为正极活性物质进行实验,研究Li Mn2O4对锂离子全电池充放电性能、安全性能、倍率放电性能、脉冲功率特性等的影响。结果表明:Li Mn2O4质量分数为35%时,既提升了锂离子全电池的电性能,又保证了其较高的安全性能;常温下电流为1I1(I1代表1 h率放电电流)充放电循环预计寿命可达到1 500周,55℃高温下电流为0.5I1充放电循环335周容量保持在92%以上;在放电深度(DOD)10%~80%内10 s脉冲充放电状态下,混合型锂离子全电池阻抗均在9 mΩ以下,50%DOD时的10 s放电比功率在700 W/kg以上。 相似文献
3.
采用草酸共沉淀法合成了锂离子正极材料LiNi0.4Mn0.4Co0.2O2。用XRD、SEM和充放电实验对合成产物的结构、形貌和电化学性能进行了表征;用DSC对合成产物在不同充电状态下的热稳定性进行了研究。结果表明,采用草酸共沉淀法合成的正极材料LiNi0.4Mn0.4Co0.2O2具有α-NaFeO2型层状结构,阳离子有序度高,粒度均匀适中,电化学性能良好,首次放电比容量达到158.7 mAh/g,30次循环后放电比容量还有144.8 mAh/g;过充电状态下具有良好的热稳定性。 相似文献
4.
《大连工业大学学报》2016,(2):131-134
采用共沉淀法合成掺杂的Li_(1/3)Ni_(1/3)Co_(1/3)Mn_(1/3-x)Sn_xO_2的正极材料,通过X射线光谱、扫描电镜、充放电测试等技术对Li_(1/3)Ni_(1/3)Co_(1/3)Mn_(1/3-x)SnxO_2材料的结构、形貌、电化学性能进行表征。结果表明,采用共沉淀法Sn4+能有效掺杂进正极材料Li_(1/3)Ni_(1/3)Co_(1/3)Mn_(1/3)O_2的体相结构。掺杂量x=0.04时,在2.8~4.2V、0.2C倍率下掺杂的正极材料首次充放电比容量为138.5mA·h/g,30次循环后的容量保持率为96.96%。掺杂Sn4+对Li_(1/3)Ni_(1/3)Co_(1/3) Mn_(1/3)O_2正极材料改性后,材料仍保持典型的α-NaFeO_2层状结构,且晶型良好,表明Sn4+掺杂能够有效改善材料的电化学性能。 相似文献
5.
以LiOH·H2O、MnSO4·H2O和NiSO4·6H2O等为原料,采用水热法合成尖晶石LiNi0.5Mn1.5O4材料.利用扫描电子显微镜、粉末X-射线衍射仪、电化学测试分别对材料形貌、结构和电化学性能进行表征.研究加入不同锂量和热处理对尖晶石LiNi0.5Mn1.5O4材料的初始容量、放电平台以及循环性能的影响.结果表明:经过850℃热处理所合成的材料分布均匀、结晶和电化学性能良好.当LiOH溶液为0.162 g·mL-1时,尖晶石LiNi0.5Mn1.5O4材料在1 C倍率电流(140 mAh g-1)条件下,首次放电比容量为111.0 mAh·g-1.且该样品的循环性能优越:经150充放电循环后的容量衰减率仅为4.5%. 相似文献
6.
采用水热法合成富锂三元正极材料,探究了最佳包覆比例下Al_2O_3包覆对材料的电化学性能影响.采用扫描电镜(SEM)和X射线衍射仪(XRD)表征了富锂三元正极材料的表面形貌和结构,通过循环伏安(CV)、交流阻抗(EIS)技术分析了材料电化学性的影响因素.结果表明,通过异丙醇铝水解制得了氧化铝包覆层,提高了材料的比容量,稳定了材料的结构. 相似文献
7.
评述了锂离子电池正极材料层状LiNi1/3Co1/3Mn1/3O2的最新研究进展,阐述其结构特征和存在的优缺点,介绍LiNi1/3Co1/3Mn1/3O2正极材料的制备方法,以及离子掺杂和包覆改性对该正极材料性能的影响,展望其发展方向. 相似文献
8.
以氢氧化铝溶胶为前驱体在Li Ni0.5Mn1.5O4正极材料表面制备尖晶石结构γ-Al2O3包覆层,借助XRD、SEM、TEM及电化学方法对电极材料的主要性能进行了研究。结果表明:Li Ni0.5Mn1.5O4表面γ-Al2O3包覆层形成条件为600℃下煅烧0.5 h,较佳包覆量约为3%(摩尔比);γ-Al2O3包覆层形貌完整,厚度约为5~10 nm,(311)晶面间距约0.24 nm;γ-Al2O3包覆的Li Ni0.5Mn1.5O4正极材料30周充放电循环(0.2 C)后的比容量为112.1 m Ah/g,4 C倍率下的比容量为82.0 m Ah/g,容量保持率较基体分别提高了约10%和17.2%。因此,γ-Al2O3包覆层减小了Li Ni0.5Mn1.5O4与电解液的接触,有效抑制了基体与电解液之间的副反应,其电化学反应可逆性、循环稳定性及倍率性能得到了提高,有望用作动力锂离子电池正极材料。 相似文献
9.
通过Mg+金属掺杂及流变相制备方法来改善橄榄石结构的LiFePO4的电化学性能.研究了不同掺杂量和不同制备方法对材料结构性能和电化学性能的影响.SEM,XRD,以及电化学测试结果表明,Mg掺杂可以较大程度提高材料电化学性能;0.1 C倍率下首次充电容量达到140.7 mAh/g.利用流变相法制备的材料粒度更小,其电化学性能得到进一步提高,0.1 C时放电比容量达到了147.5 mAh/g. 相似文献
10.
介绍了一种新型锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的研究概况,分析了该材料的结构特点和电化学性质,总结了三元材料的主要制备方法,以及如何利用掺杂和包覆对其进行改性,以提高其性能,并指出了三元材料的发展前景和今后的研究方向. 相似文献
11.
以Fe2O3,LiH2PO4,乙炔黑和蔗糖为原料,采用高温固相合成方法制备LiFePO4/C复合正极材料。利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明,合成材料为单一晶相正交晶系结构,在电压为2.50~4.20V(vs.Li^+/Li),以0.1mA/cm^2电流密度下经恒电流充放电测试,其首次放电比容量为156.3mAh/g,经过30周充放电循环后放电比容量为157.7mAh/g,表现出较大的初始放电比容量和优异的循环性能。 相似文献
12.
以Li2CO3 和TiO2 为原料,以乙醇为分散剂,采用高温固相方法合成Li4Ti5O12锂离子电池负极材
料,利用XRD、SEM 和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行了表征。系统考察了热处理
温度对Li4Ti5O12负极材料结构及电化学性能的影响,同时也研究了锂的投料量对Li4Ti5O12电化学性能的影响。在
1.0~2.2V(vs.Li/Li + )范围内,以0.1mA/cm2 的电流密度对最佳工艺条件下合成的Li4Ti5O12负极材料进行了恒
电流充放电测试。其首次放电比容量为167mAh/g,经过30周充放电循环后放电比容量几乎没有衰减,表现出较
大的初始放电比容量和良好的循环性能。 相似文献
13.
锂离子电池正极材料LiNi0.8Co0.2O2的合成及性能研究 总被引:1,自引:0,他引:1
以硝酸盐和淀粉为原料,采用溶胶-凝胶方法合成LiNi0.8Co0.2O2锂离子电池正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明,合成材料为单一晶相的α-NaFeO2型层状结构,颗粒小且分布均匀,在电压为2.75~4.50 V (vs. Li+/Li) 范围内,以0.2 mA/cm2电流密度下经恒电流充放电测试,其首次放电比容量为183.1 mAh/g,经过50周充放电循环后放电比容量为171.3 mAh/g,表现出较大的初始放电比容量和良好的循环性能。 相似文献
14.
以Li2CO3和TiO2为原料,以乙醇为分散剂,采用高温固相方法合成Li4Ti5O12锂离子电池负极材料,利用XRD、SEM和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行了表征。系统考察了热处理温度对Li4Ti5O12负极材料结构及电化学性能的影响,同时也研究了锂的投料量对Li4Ti5O12电化学性能的影响。在1.0~2.2 V(vs.Li/Li+)范围内,以0.1 mA/cm2的电流密度对最佳工艺条件下合成的Li4Ti5O12负极材料进行了恒电流充放电测试。其首次放电比容量为167 mAh/g,经过30周充放电循环后放电比容量几乎没有衰减,表现出较大的初始放电比容量和良好的循环性能。 相似文献
15.
采用共沉淀法和成LiNi0.8Co0.2O2,探讨影响锂离子电池正极材料LiNi0.8Co0.2O2电化学性能及结构的因素.为了提高材料的电化学性能,对材料进行了掺杂改性的研究,分别掺入Al、Mn、Mg和Fe四种元素.通过在2.8~4.2V范围内的充放电测试分析,掺入Mn的正极材料LiNi0.8Co0.1Mn0.1O2具有最高的放电比容量以及最低的容量损失,其首次放电容量为168.84 mAh/g,十次循环后的放电容量为166.9 mAh/g. 相似文献
16.
To improve the cyclic stability at high temperature and thermal stability, the spherical Al_2O_3-modified Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2 was modified successfully with nano-Al_2O_3. The discharge capacity retention of Al_2O_3-modified Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2, the Al_2O_3-modified material cathode exhibited good thermal stability. 相似文献
17.
《焦作工学院学报》2019,(6):146-150
为提高锂离子电池正极材料LiNi_(0.8)Co_(0.2)O_2的综合电化学性能,采用高温固相法对其表面进行ZrO_2包覆。以X射线衍射、扫描电子显微镜、电化学阻抗和电化学充放电等方法对材料进行表征。结果显示,ZrO_2可均匀分布在LiNi_(0.8)Co_(0.2)O_2表面而不影响其晶体结构,但对电化学性能影响明显,即首次放电容量略有降低,由168.25 mAh/g降到157.43 mAh/g;1C、2C倍率性能有较大改善,循环性能的提高尤其突出,在100周循环内,LiNi_(0.8)Co_(0.2)O_2的容量保持率从90.68%提高到97.70%。其原因是:(1)包覆层有效避免了电解液与正极材料直接接触、抑制副反应的发生;(2)包覆过程中生成的Li_2ZrO_3提高了材料的离子导电性。该研究结果为改善锂离子电池正极材料综合电化学性能提供了简便、有效的方法。 相似文献
18.
A coprecipitation method was used for preparation of 0.95Pb[(Mg0.8,Zn0.2) 1/ 3 Nb2 /3]O3-0.05PbTiO3(PMZN-PT),dielectric ceramic powder. X-ray powder diffraction and electron probe energy dispersive, X-ray analyzer revealed that the powder calcinated at 800℃ for 2 h is the PMZN-PT with 100% single perovskite phase, and the order of magnitude of atomic proportion of Mg to Zn reaches approximately 10: 1. In addition, the influence of Zn and Ti content on the perovskite phase and pyrochlore phase formation namely : 0.95Pb[(Mg1-x Znx) 1 /3Nb,2/3]O3 -0.05PbTiO3, (1-y)Pb[(Mg0.7Zn0.3) 1 /3Nb2 /3] O3-yPbTiO3 was also analysed. 相似文献