首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究焊接对800 MPa级Ti、Nb复合微合金化析出强化超细晶粒钢组织性能的影响.运用Gleeble3500热模拟试验机,对实验钢进行单道次焊接热循环试验,并研究冷却速度、冷却时间t8/5对焊接热影响区粗晶区(CGHAZ)组织、性能的影响.结果表明:冷却速度5~15℃/s,CGHAZ的组织为贝氏体,冷却速度进一步增大,会出现马氏体.随着冷却时间t8/5的增加,原奥氏体晶粒尺寸逐渐增加,硬度值逐渐降低,冲击韧性先上升后下降.t8/5为20~120 s时,CGHAZ显微硬度(223~250.4 HV)均小于母材的显微硬度(270.6 HV),出现软化现象,t8/5为20 s时,冲击吸收功最高,为18.2 J,但仅有母材的25.3%.经历焊接热循环后,奥氏体晶粒粗化以及CGHAZ出现贝氏体组织是导致脆化的主要原因.  相似文献   

2.
X80 pipeline steel produced by TMCP has high strength and high toughness with ultrafine grain microstructure. The microstructure coarsens and the toughness worsens at the coarse grained (CG) HAZ apparently after weld simulation. The experimental results indicated that the bainitic ferrite and the second phases formed at cooling are differently as the variation of carbon in base metal. In low carbon steels, the bainitic ferrite laths are long and narrow, the second phases are complex including residual austenite, martensite, the M-A constituent and the Fe3C carbide. The formation of Fe3C carbide is the main reason of the poor toughness in CG HAZ. The ultralow carbon in base metal, however, can improve the CG HAZ toughness through restraining the formation of carbides, decreasing the M-A constituent, increasing the residual austenite content, which are beneficial to the CG HAZ toughness.  相似文献   

3.
1 200 MPa级HSLA钢的SH-CCT曲线及其热影响区组织与性能   总被引:1,自引:1,他引:0  
为在工程应用中对焊接工艺的合理选取与制定提供理论和试验依据,采用焊接热模拟技术研究了800~500℃冷却时间(t8/5)对1 200 MPa级低合金高强钢焊接热影响区粗晶区(CGHAZ)显微组织和性能的影响.结果表明:t8/5为6~20 s时,该钢热影响区的粗晶区组织为板条马氏体,硬度为477~456 HV5;随着冷却时间的延长,组织中开始出现板条贝氏体,在t8/5为60 s时硬度下降到380 HV5;当t8/5为60~600 s时,粗晶区组织为板条贝氏体和粒状贝氏体,硬度为380~300 HV5;t8/5600 s时粗晶区组织主要为粒状贝氏体,硬度为300~315 HV5.试验钢碳当量为0.626%,冷裂纹敏感系数为0.335%,说明其淬硬倾向较大,焊接热影响区容易产生裂纹.  相似文献   

4.
研究了热输入对06CuNiCrMoNb钢焊接热影响区不同部位组织和性能的影响,重点分析了粗晶区的韧性与组织之间的关系。结果表明,模拟焊接热影响区没有出现"软化"现象,但是当线能量大于30kJ/cm情况下,粗晶区低温韧性迅速下降。对粗晶区的分析显示,线能量17kJ/cm条件下贝氏体铁素体呈细小板条状,在板条间存在着残余奥氏体薄膜,随线能量的增大,块状的铁素体数量增多,并且出现不规则片状M+A组元。  相似文献   

5.
用焊接热模拟方法研究了V-N-Ti和Nb-V-Ti微合金化正火型海工钢模拟粗晶热影响区(CGHAZ)组织和韧性的变化规律。结果表明,组织的不同使V-N-Ti设计正火型海工钢的模拟CGHAZ韧性比Nb-V-Ti钢的好。对于V-N-Ti钢,较高的N含量提高了富Ti(Ti, V)(C, N)粒子析出温度和铁素体形核能力,使模拟CGHAZ原始奥氏体晶粒和(取向差角为15°)晶粒细化,并生成能阻止或使解理裂纹的偏转细小多边形铁素体,因此具有良好的低温韧性。而Nb-V-Ti钢模拟CGHAZ原奥氏体晶界上的链状M-A、粗大的原始奥氏体晶粒和有效晶粒尺寸,是模拟CGHAZ韧性差的原因。  相似文献   

6.
The present study focuses on the fatigue properties in the weld heat-affected zone (HAZ) of 800 MPa grade high-performance steel, which is commonly used in bridges and buildings. Single- and multi-pass HAZs were simulated by the Gleeble system. Fatigue properties were estimated using a crack propagation test under a 0.3 stress ratio and 0.1 load frequencies. The microstructures and fracture surfaces were analyzed by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results of the crack propagation test showed that the fatigue crack growth rate of coarse-grained HAZ (CGHAZ) was faster than fine-grained HAZ (FGHAZ), although both regions have identical fully martensite microstructures, because FGHAZ has smaller prior austenite grain and martensite packet sizes, which can act as effective barriers to crack propagation. The fatigue crack growth rate of intercritically reheated CGHAZ (ICCGHAZ) was the fastest among local zones in the HAZ, due to rapid crack initiation and propagation via the massive martensite-austenite (M-A) constituent.  相似文献   

7.
Eglin steel is a new ultrahigh strength steel that has been developed at Eglin Air Force Base in the early 2000s. This steel could be subjected to a variety of processing steps during fabrication, each with its own thermal history. This article presents a continuous cooling transformation diagram developed for Eglin steel to be used as a guideline during processing. Dilatometry techniques performed on a Gleeble thermomechanical simulator were combined with microhardness results and microstructural characterisation to develop the diagram. The results show that four distinct microstructures form within Eglin steel depending on the cooling rate. At cooling rates above ~1°C s?1, a predominately martensitic microstructure is formed with hardness of ~520 HV. Intermediate cooling rates of 1 to 0.2°C s?1 produce a mixed martensitic/bainitic microstructure with a hardness that ranges from 520 to 420 HV. Slower cooling rates of 0.1 to 0.03°C s?1 lead to the formation of a bainitic microstructure with a hardness of ~420 HV. The slowest cooling rate of 0.01°C s?1 formed a bainitic microstructure with an apparent carbide constituent at the prior austenite grain boundaries.  相似文献   

8.
The effects of Cu content on microstructure and impact toughness in the simulated coarse-grained heat-affected zone (CGHAZ) of high-strength low-alloy steels were investigated. It has been observed that the microstructure in the simulated CGHAZ of Cu-free steel is dominated by a small proportion of acicular ferrite and predominantly bainite with martensite–austenite constituent. Whereas, in the 0.45 and 1.01% Cu-containing steels, the acicular ferrite increased significantly due to the effective nucleation on intragranular inclusions with outer layer of MnS and CuS. The formation of acicular ferrite is attributed to superior high heat-affected zone impact toughness in the 0.45% Cu-containing steel. Furthermore, the increasing martensite–austenite constituent and ε-Cu precipitates in the simulated CGHAZ of 1.01% Cu-containing steel caused degradation in impact toughness.  相似文献   

9.
The effects of Cu and Al addition on the microstructure and fracture in the coarse-grained heat-affected zone (CGHAZ) of high-strength low-alloy steels with superior toughness were studied and compared with the X70 pipeline base steel counterpart. The microstructure in base steel was dominated by a small fraction of acicular ferrite and predominantly bainite. However, acicular ferrite microstructure was obtained in Cu-bearing steel, which nucleated on complex oxide with outer layer of MnS and CuS because of Cu addition. The microstructure in Al-bearing steel consisted of bainite with ultrafine martensite–austenite constituent, which was refined by Al addition. CGHAZ in Cu-bearing and Al-bearing steels had superior impact toughness and ductile fracture, which were attributed to acicular ferrite and ultrafine martensite–austenite constituent, respectively.  相似文献   

10.
The microstructures and mechanical properties of coarse grain heat-affected zone (CGHAZ) of domestic X70 pipeline were investigated. The weld CGHAZ thermal cycles having different cooling time Δt 8/5 were simulated with the Gleeble-1500 thermal/mechanical simulator. The Charpy impact absorbed energy for toughness was measured, and the corresponding fractographs, optical micrographs, and electron micrographs were systematically investigated to study the effect of cooling time on microstructure, impact toughness, and fracture morphology in the CGHAZ of domestic X70 pipeline steel during in-service welding. The results of simulated experiment show that the microstructure of CGHAZ of domestic X70 pipeline steel during in-service welding mainly consists of granular bainite and lath bainite. Martensite–austenite (M–A) constituents are observed at the lath boundaries. With increase in cooling time, the M–A constituents change from elongated shape to massive shape. The reduction of toughness may be affected by not only the M–A constituents but also the coarse bainite sheaves. Accelerating cooling with cooling time Δt 8/5 of 8 s can be chosen in the field in-service welding X70 pipeline to control microstructures and improve toughness.  相似文献   

11.
A comparative study was conducted to assess the effects of two different heat treatments on the amount and morphology of the retained austenite in a micro/nano-structured bainitic steel. The heat treatments used in this work were two-stage bainitic transformation and bainitic-partitioning transformation. Both methods resulted in the generation of a multi-phase microstructure containing nanoscale bainitic ferrite, and/or fresh martensitic phases and much finer retained austenite. Both heat treatments were verified to be effective in refining the retained austenite in micro/nano-structured bainite and increasing the hardness. However, the bainitic transformation followed by partitioning cycle was proved to be a more viable approach than the two-stage bainitic transformation due to much shorter processing time, i.e. ~2?h compared to ~4 day, respectively.  相似文献   

12.
微合金钢中变形奥氏体等温转变产物的组织与强度   总被引:4,自引:0,他引:4  
研究了一种含Mu,Nu,Ti和B是超低碳洁净钢和两种工业钢X60和XTE355在900℃或780℃压缩70%后在500℃等温转变产物的组织与强度,结果表明,在奥氏体非再结晶温区大变形量变形后进行中温转变可有效细化晶粒,提高强度,处理后试验钢的晶粒尺寸为1-2um, 抗拉强度在750MPa 以上,添加微量明显提高钢的贝氏淬透性,含硼的洁净钢具有细晶氏体组织,获得了最大的抗拉强度(789MPa),对在Ar3温度附近变形后再经中温等温转形成的组织,强度以及影响因素进行了讨论。  相似文献   

13.
为综合研究X90管线钢的焊接性,选用国内某钢厂轧制的X90管线钢卷板,利用预精焊工艺制备试验钢管4根,采用金相分析、扫描电镜(SEM)断口分析、夏比V型缺口冲击试验、拉伸、弯曲、硬度等试验,研究了焊接接头各个区域的组织和性能.试验结果表明:内外焊缝区组织均为针状铁素体,热影响区(HAZ)粗晶区晶粒粗化严重,主要组织为粒状贝氏体和贝氏体铁素体,在原奥氏体晶界和贝氏体板条内部存在块状或条状的(马氏体-奥氏体)M-A组元;HAZ冲击功离散性较大,出现了单值较低(45 J)的试样,SEM断口分析呈现典型的解理断裂特征;焊接接头抗拉强度805~815 MPa,断裂位置均在HAZ;焊接接头反弯试样易在HAZ出现裂纹和脆断现象;HAZ硬度在220~250 HV之间,较母材下降30 HV左右.HAZ是X90预精焊钢管焊接接头的薄弱环节,为提高X90管线钢的焊接稳定性,应重点研究精焊内外热循环双热影响亚区的组织转变和脆化机理.  相似文献   

14.
采用热电偶测温技术测量了激光-MAG复合焊及常规MAG焊接头粗晶区热循环曲线,并通过金相显微镜对比分析了两种焊接接头粗晶区组织特征。研究结果表明:与常规MAG焊相比,HLAW热循环加热及冷却速度较大,高温停留时间短,呈陡升陡降特征;粗晶区主要由粒状贝氏体、贝氏体、贝氏体基体上析出粒状碳化物组织及细小板条状马氏体组成;M-A岛含量较少,以细小颗粒状弥散分布在铁素体基体上。  相似文献   

15.
The objective of this paper is to study the influence of the second peak temperature during real and simulated welding on properties of the subcritically (S), intercritically (IC) and supercritically (SC) reheated coarse grained heat affected (CGHAZ) zones. The X80 high strength pipeline microalloyed steel was subject to processing in a double-pass tandem submerged arc welding process with total heat input of 6.98 kJ/mm and thermal cycles to simulate microstructure of reheated CGHAZ zones. This involved heating to a first peak temperature (TP1) of 1400 °C, then reheating to different second peak temperatures (TP2) of 700, 800 and 900 °C with a constant cooling rate of 3.75 °C/s. Toughness of the simulated reheated CGHAZ regions were assessed using Charpy impact testing at 0 °C, −25 °C and −50 °C. The microstructure of the real and simulated reheated CGHAZ regions was investigated using an optical microscope and field emission scanning electron microscope. Morphology of the martensite/austenite (MA) constituent was obtained by the use of a field emission scanning electron microscope. The blocky and connected MA particles, along prior-austenite grain boundaries, act as a brittle phase for the initiation site of the brittle fracture. Charpy impact results indicated that IC CGHAZ had less absorbed energy with higher transition temperature and hardness. The SC CGHAZ region showed higher absorbed impact energy with lower hardness. Design of multipass weld joints with less IC CGHAZ regions can result in a higher toughness property.  相似文献   

16.
采用光学显微镜和扫描电子显微镜等技术手段观察了经1100℃奥氏体化的9Cr2Mo钢在不同温度的盐浴中等温淬火后贝氏体的组织形貌。结果表明:9Cr2Mo钢1100℃奥氏体化后,在410℃的硝盐浴中等温得到羽毛状的经典上贝氏体组织,在350℃的硝盐浴中等温得到针状(或片状)的下贝氏体组织;上贝氏体铁素体铁素体是在奥氏体晶界处形核并向晶内生长,碳化物在铁素体条间分布;下贝氏体是在奥氏体晶内形核,碳化物分布在铁素体片中间,碳化物大多数与片条的主轴方向交角排列,但角度不等。  相似文献   

17.
对一种钒微合金化TRIP钢进行冷轧连续退火,研究了钢的组织特征和力学性能。结果表明,贝氏体基TRIP钢的组织由贝氏体/马氏体和少量的残余奥氏体组成。随着贝氏体区等温时间的延长,钢的抗拉强度下降,屈服强度和延伸率提高。残余奥氏体由块状向薄膜状转变,体积分数增加,薄膜状残余奥氏体主要分布在贝氏体板条间,厚度为50-90 nm。在400℃等温180 s连续退火钢板呈现出相对低抗拉强度(960 MPa)、高屈服强度(765 MPa)和高延伸率(22.0%)的特性,而且加工硬化指数(0.20)、各向异性指数(0.94)和强塑积(21120 MPa.%)也较为优良。  相似文献   

18.
The microstructure in the intercritical heat-affected zone (ICHAZ) of HQ130 steel, has been investigated by thermo-simulation test, SEM and TEM. The problem of toughness decrease in the ICHAZ (T p = 800°C) as well as the effect of M-A constituent and carbide precipitation on brittleness was analysed. The test results indicated that the microstructure in the ICHAZ of HQ130 steel was mostly a mixture of lath martensite (ML) and granular bainite (Bg) with a fine but nonuniform grain structure. The cause of brittleness in the ICHAZ was related to production of the M-A constituent in the local region and carbide precipitation. By controlling the welding heat input carbide precipitation and the formation of the M-A constituent can be avoided or decreased.  相似文献   

19.
The transformation behaviours and microstructural characteristics of three low carbon microalloyed steels were investigated. In particular, the effects of deformation and cooling conditions were studied by means of compression tests. It was found that at higher cooling rate (45℃/s), the transformation products was mainly granular bainite, the intragranular nucleated bainitic ferrite grew in different directions, and the second phase particles of M/A constituent uniformly distributed in the bainitic ferrite matrix. When the cooling rate was decreased to 25℃/s or 15℃/s, the resulting microstructure was converted to a mixture of polygonal hypoeutectoid ferrite and granular bainite, whose percentage was reduced. As the cooling rate was lowered to 8℃/s, the microstructure consisted chiefly of polygonal ferrite with a few amounts of M/A and pearlite.  相似文献   

20.
An intercritical annealing pre-treatment was added before the conventional two-step heat treatment process, and the effect of the isothermal bainitic transformation (IBT) time on the steel's microstructure and mechanical properties were investigated. The microstructure was investigated using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, while the mechanical properties were evaluated using tensile testing. The microstructure of the three-step hot-dip galvanised transformation induced plasticity (TRIP) steel consists of ferrite, bainite, retained austenite, and martensite. The mechanical properties of the steel after the three-step heat treatment process are excellent, with a tensile strength above 770?MPa and elongation above 29%. The effect of IBT time on the mechanical properties was insignificant because the intercritical annealing pre-treatment increases the bainitic transformation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号