首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In mobile wireless networks, dynamic allocation of resources such as transmit powers, bit-rates, and antenna beams based on the channel state information of mobile users is known to be the general strategy to explore the time-varying nature of the mobile environment. This paper looks at the problem of optimal resource allocation in wireless networks from different information-theoretic points of view and under the assumption that the channel state is completely known at the transmitter and the receiver. In particular, the fading multiple-access channel (MAC) and the fading broadcast channel (BC) with additive Gaussian noise and multiple transmit and receive antennas are focused. The fading MAC is considered first and a complete characterization of its capacity region and power region are provided under various power and rate constraints. The derived results can be considered as nontrivial extensions of the work done by Tse and Hanly from the case of single transmit and receive antenna to the more general scenario with multiple transmit and receive antennas. Efficient numerical algorithms are proposed, which demonstrate the usefulness of the convex optimization techniques in characterizing the capacity and power regions. Analogous results are also obtained for the fading BC thanks to the duality theory between the Gaussian MAC and the Gaussian BC.  相似文献   

2.
We consider a multiuser multiple-input multiple- output (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. We establish a duality between what is termed the "dirty paper" achievable region (the Caire-Shamai (see Proc. IEEE Int. Symp. Information Theory, Washington, DC, June 2001, p.322) achievable region) for the MIMO BC and the capacity region of the MIMO multiple-access channel (MAC), which is easy to compute. Using this duality, we greatly reduce the computational complexity required for obtaining the dirty paper achievable region for the MIMO BC. We also show that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate of the MIMO BC.  相似文献   

3.
In this paper, we consider multihop multiple access (MAC) and broadcast channels (BC) where communication takes place with the assistance of relays that amplify and forward (AF) their received signals. For a two-hop parallel AF relay MAC, assuming a sum power constraint across all relays we characterize optimal relay amplification factors and the resulting optimal rate regions. We find the maximum sum rate and the maximum rate for each user in closed form and express the optimal rate pair (R1, R2) that maximizes mu1R1+mu2R2 as the solution of a pair of simultaneous equations. We find that the parallel AF relay MAC with total transmit power of the two users P1+P2=P and total relay power PR is the dual of the parallel AF relay BC where the MAC source nodes become the BC destination nodes, the MAC destination node becomes the BC source node, the dual BC source transmit power is PR and the total transmit power of the AF relays is P. The duality means that the rate region of the AF relay MAC with a sum power constraint P on the transmitters is the same as that of the dual BC. The duality relationship is found to be useful in characterizing the rate region of the AF relay BC as the union of MAC rate regions. The duality is established for distributed multiple antenna AF relay nodes and multiple (more than 2) hops as well.  相似文献   

4.
We consider layered transmission of a successively refinable source over a quasi-static fading channel. We establish a duality relationship between this problem and that of packet transmission over erasure channels and use it to share solution techniques in both domains. For a Gaussian source and the fading channel, a low-complexity, optimal algorithm is proposed, and it is shown that the corresponding dual for packet erasure channels has a linear complexity as opposed to the quadratic complexity of the best known optimal algorithms in the literature. For non-Gaussian sources, the optimal rate allocation problem for fading channels is solved using the dual solution for erasure channels. It is also shown that a single-layer system is optimal for fading channels if the goal is to maximize the rate. Numerical results for multiple antenna Rayleigh fading channels are presented for Gaussian sources and practical image coders. It is shown that a few number of layers significantly improves the performance. Finally, we numerically show that for practical operating conditions, optimizing the asymptotic measure of distortion exponent is not enough when there are more than one transmit or receive antennas.  相似文献   

5.
A Gaussian multiple access channel (MAC) with common data is considered. Capacity region when there is no fading is known in an implicit form. We provide an explicit characterization of the capacity region and provide a simpler encoding/decoding scheme than that mentioned in work by Slepian and Wolf. Next, we give a characterization of the ergodic capacity region when there is fading, and both the transmitters and the receiver know the channel perfectly. Then, we characterize the optimum power allocation schemes that achieve arbitrary rate tuples on the boundary of the capacity region. Finally, we provide an iterative method for the numerical computation of the ergodic capacity region and the optimum power control strategies.  相似文献   

6.
In decentralized detection, local sensor observations have to be communicated to a fusion center through the wireless medium, inherently a multiple-access channel (MAC). As communication is bandwidth- and energy-constrained, it has been suggested to use the properties of the MAC to combine the sensor observations directly on the channel. Although this leads to an array-processing gain if the sensors' transmissions combine coherently on the channel, it has been shown that this is not the case when they combine noncoherently. We review known results for the coherent case and then analyze the noncoherent case based on a simple on/off scheme combined with optimal sensor “censoring.” Since the optimal forwarding function is not available, we also bound the performance using an equivalent communication problem and a centralized estimator to verify trends. We find that for noncoherent modulation, there is no processing gain using the MAC for decentralized detection, but compared to parallel-access channels (PACs) the MAC avoids the noncoherent combining loss. Still the performance of the MAC approach is only of diversity one, as the output of the MAC is approximately a zero-mean complex Gaussian random variable for a large number of sensor. The MAC performance can be increased by using multiple independent channels, each used as a MAC by all sensors, which we term diversity-MAC. This approach always outperforms the PAC scheme on Rayleigh fading channels, where the output is exactly Gaussian, but has inferior performance across random phase channels when few sensors are used, as the PAC does not create “artificial” fading.   相似文献   

7.
We study the performance of a transmission scheme employing random Gaussian codebooks and nearest neighbor decoding over a power limited additive non-Gaussian noise channel. We show that the achievable rates depend on the noise distribution only via its power and thus coincide with the capacity region of a white Gaussian noise channel with signal and noise power equal to those of the original channel. The results are presented for single-user channels as well as multiple-access channels, and are extended to fading channels with side information at the receiver  相似文献   

8.
 本文研究了在系统和速率一定的条件下有着高斯噪声的衰落MIMO广播信道和功率最小化问题.该问题通常存在于无线通信系统动态资源分配中,是和功率约束下衰落MIMO下行链路和速率最大化的互补问题.首先利用MIMO MAC和MIMO BC的对偶性,将问题描述和转化为凸最优化问题,在此基础上,利用子梯度法和二分法,设计了相应的快速迭代的多用户注水算法,用于计算基站的发射功率.理论分析和数值仿真结果表明,该算法全局有效地收敛于最小的和功率.  相似文献   

9.
We consider Gaussian multiple-input multiple-output (MIMO) frequency-selective spatially correlated fading channels, assuming that the channel is unknown at the transmitter and perfectly known at the receiver. For Gaussian codebooks, using results from multivariate statistics, we derive an analytical expression for a tight lower bound on the ergodic capacity of such channels at any signal-to-noise ratio (SNR). We show that our bound is tighter than previously reported analytical lower bounds, and we proceed to analytically quantify the impact of spatial fading correlation on ergodic capacity. Based on a closed-form approximation of the variance of mutual information in correlated flat-fading MIMO channels, we provide insights into the multiplexing-diversity tradeoff for Gaussian code books. Furthermore, for a given total number of antennas, we consider the problem of finding the optimal (ergodic capacity maximizing) number of transmit and receive antennas, and we reveal the SNR-dependent nature of the maximization strategy. Finally, we present numerical results and comparisons between our capacity bounds and previously reported bounds.  相似文献   

10.
On the capacity of MIMO relay channels   总被引:10,自引:0,他引:10  
We study the capacity of multiple-input multiple- output (MIMO) relay channels. We first consider the Gaussian MIMO relay channel with fixed channel conditions, and derive upper bounds and lower bounds that can be obtained numerically by convex programming. We present algorithms to compute the bounds. Next, we generalize the study to the Rayleigh fading case. We find an upper bound and a lower bound on the ergodic capacity. It is somewhat surprising that the upper bound can meet the lower bound under certain regularity conditions (not necessarily degradedness), and therefore the capacity can be characterized exactly; previously this has been proven only for the degraded Gaussian relay channel. We investigate sufficient conditions for achieving the ergodic capacity; and in particular, for the case where all nodes have the same number of antennas, the capacity can be achieved under certain signal-to-noise ratio (SNR) conditions. Numerical results are also provided to illustrate the bounds on the ergodic capacity of the MIMO relay channel over Rayleigh fading. Finally, we present a potential application of the MIMO relay channel for cooperative communications in ad hoc networks.  相似文献   

11.
12.
We propose a scalar upper bound on the capacity region of the isotropic fading vector broadcast channel in terms of the capacity region of a scalar fading broadcast channel. The scalar upper bound is applicable to the broad class of isotropic fading broadcast channels regardless of the distribution of the users' channel magnitudes, the distribution of the additive noise experienced by each user, or the amount of channel knowledge available at the receiver. Using this upper bound, we prove the optimality of the Alamouti scheme in a broadcast setting, extend the recent results on the capacity of nondegraded, fading scalar broadcast channels to nondegraded fading vector broadcast channels, and determine the capacity region of a fading vector Gaussian broadcast channel with channel magnitude feedback. We also provide an example of a Rayleigh-fading broadcast channel with no channel state information available to the receiver (CSIR), where the bound on the capacity region obtained by a naive application of the scalar upper bound is provably loose, because it fails to account for the additional loss in degrees of freedom due to lack of channel knowledge at the receiver. A tighter upper bound is obtained by separately accounting for the loss in degrees of freedom due to lack of CSIR before applying the scalar upper bound.  相似文献   

13.
A conditionally Gaussian channel is a vector channel in which the channel output, given the channel input, has a Gaussian distribution with (well-behaved) input-dependent mean and covariance. We study the capacity-achieving probability measure for conditionally Gaussian channels subject to bounded-input constraints and average cost constraints. Many practical communication systems, including additive Gaussian noise channels, certain optical channels, fading channels, and interference channels fall within this framework. Subject to bounded-input constraint (and average cost constraints), we show that the channel capacity is achievable and we derive a necessary and sufficient condition for a probability measure to be capacity achieving. Under certain conditions, the capacity-achieving measure is proved to be discrete.  相似文献   

14.
Jorswieck  E.A. 《Electronics letters》2006,42(25):1466-1468
Recently, the duality between capacity regions of certain single and multiple antenna MAC with SIC and BC with DPC was proved under the assumption of perfect CSI at the transmitter as well as the receiver. Considered is the case in which the transmitter has only statistical CSI. It is shown that the average rate region of the SISO BC is a subset of the average rate region of the SISO MAC and that there is a lack of duality between the MAC and BC  相似文献   

15.
Recent information-theoretic results show the optimality of dirty-paper coding (DPC) in achieving the full capacity region of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC). This paper presents a DPC based code design for BCs. We consider the case in which there is an individual rate/signal-to-interference-plus-noise ratio (SINR) constraint for each user. For a fixed transmitter power, we choose the linear transmit precoding matrix such that the SINRs at users are uniformly maximized, thus ensuring the best bit-error rate performance. We start with Cover's simplest two-user Gaussian BC and present a coding scheme that operates 1.44 dB from the boundary of the capacity region at the rate of one bit per real sample (b/s) for each user. We then extend the coding strategy to a two-user MIMO Gaussian BC with two transmit antennas at the base-station and develop the first limit-approaching code design using nested turbo codes for DPC. At the rate of 1 b/s for each user, our design operates 1.48 dB from the capacity region boundary. We also consider the performance of our scheme over a slow fading BC. For two transmit antennas, simulation results indicate a performance loss of only 1.4 dB, 1.64 dB and 1.99 dB from the theoretical limit in terms of the total transmission power for the two, three and four user case, respectively.  相似文献   

16.
In multiaccess wireless systems, dynamic allocation of resources such as transmit power, bandwidths, and rates is an important means to deal with the time-varying nature of the environment. We consider the problem of optimal resource allocation from an information-theoretic point of view. We focus on the multiaccess fading channel with Gaussian noise, and define two notions of capacity depending on whether the traffic is delay-sensitive or not. We characterize the throughput capacity region which contains the long-term achievable rates through the time-varying channel. We show that each point on the boundary of the region can be achieved by successive decoding. Moreover, the optimal rate and power allocations in each fading state can be explicitly obtained in a greedy manner. The solution can be viewed as the generalization of the water-filling construction for single-user channels to multiaccess channels with arbitrary number of users, and exploits the underlying polymatroid structure of the capacity region  相似文献   

17.
The capacity of multiple-input multiple-output (MIMO) wireless channels is limited by both the spatial fading correlation and rank deficiency of the channel. While spatial fading correlation reduces the diversity gains, rank deficiency due to double scattering or keyhole effects decreases the spatial multiplexing gains of multiple-antenna channels. In this paper, taking into account realistic propagation environments in the presence of spatial fading correlation, double scattering, and keyhole effects, we analyze the ergodic (or mean) MIMO capacity for an arbitrary finite number of transmit and receive antennas. We assume that the channel is unknown at the transmitter and perfectly known at the receiver so that equal power is allocated to each of the transmit antennas. Using some statistical properties of complex random matrices such as Gaussian matrices, Wishart (1928) matrices, and quadratic forms in the Gaussian matrix, we present a closed-form expression for the ergodic capacity of independent Rayleigh-fading MIMO channels and a tight upper bound for spatially correlated/double scattering MIMO channels. We also derive a closed-form capacity formula for keyhole MIMO channels. This analytic formula explicitly shows that the use of multiple antennas in keyhole channels only offers the diversity advantage, but provides no spatial multiplexing gains. Numerical results demonstrate the accuracy of our analytical expressions and the tightness of upper bounds.  相似文献   

18.
We consider multiaccess, broadcast, and interference channels with additive Gaussian noise. Although the set of rate pairs achievable by time-division multiple access (TDMA) is not equal to the capacity region, the TDMA achievable region converges to the capacity region as the power decreases. Furthermore, TDMA achieves the optimum minimum energy per bit. Despite those features, this paper shows that the growth of TDMA-achievable rates with the energy per bit is suboptimal in the low-power regime except in special cases: multiaccess channels where the users' energy per bit are identical and broadcast channels where the receivers have identical signal-to-noise ratios. For the additive Gaussian noise interference channel, we identify a small region of interference parameters outside of which TDMA is also shown to be suboptimal. The effect of fading (known to the receiver) on the suboptimality of TDMA is also explored.  相似文献   

19.
We obtain the Shannon capacity region of the down-link (broadcast) channel in fading and additive white Gaussian noise (AWGN) for time-division, frequency-division, and code-division. For all of these techniques, the maximum capacity is achieved when the transmitter varies the data rate sent to each user as their channels vary. This optimal scheme requires channel estimates at the transmitter; dynamic allocation of timeslots, bandwidth, or codes; and variable-rate and power transmission. For both AWGN and fading channels, nonorthogonal code-division with successive decoding has the largest capacity region, while time-division, frequency-division, and orthogonal code-division have the same smaller region. However, when all users have the same average received power, the capacity region for all these techniques is the same. In addition, the optimal nonorthogonal code is a multiresolution code which does not increase the signal bandwidth. Spread-spectrum code-division with successive interference cancellation has a similar rate region as this optimal technique, however, the region is reduced due to bandwidth expansion. We also examine the capacity region of nonorthogonal code-division without interference cancellation and of orthogonal code-division when multipath corrupts the code orthogonality. Our results can be used to bound the spectral efficiency of the downlink channel using time-division, frequency-division, and code-division, both with and without multiuser detection  相似文献   

20.
We derive the capacity region for a broadcast channel with intersymbol interference (ISI) and colored Gaussian noise under an input power constraint. The region is obtained by first defining a similar channel model, the circular broadcast channel, which can be decomposed into a set of parallel degraded broadcast channels. The capacity region for parallel degraded broadcast channels is known. We then show that the capacity region of the original broadcast channel equals that of the circular broadcast channel in the limit of infinite block length, and we obtain an explicit formula for the resulting capacity region. The coding strategy used to achieve each point on the convex hull of the capacity region uses superposition coding on some or all of the parallel channels and dedicated transmission on the others. The optimal power allocation for any point in the capacity region is obtained via a multilevel water-filling. We derive this optimal power allocation and the resulting capacity region for several broadcast channel models  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号