首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current-transport properties of Al-n-p silicon Schottky-barrier diodes have been studied both experimentally and theoretically. An analytical model for the I-V characteristic of a metal-n-p Schottky barrier diode has been developed by using an interfacial layer-thermionic-diffusion model. Assuming a Gaussian distribution for the implanted profile, the barrier-height enhancement and ideality factor have been derived analytically. Using low energy (25 KeV) arsenic implantation with the dose ranged form 8 × 1010/cm2 to 1012/cm2, Al-n-p silicon Schottky barrier diodes have been fabricated and characterized. Comparisons between the experimental measurements and the results of computer simulations have been performed and satisfactory agreements between these comparisons have been obtained. The reverse I–V characteristics of the fabricated Al-n-p silicon Schottky barrier diodes can also be well simulated by the developed model.  相似文献   

2.
Deep level defects in both p+/n junctions and n-type Schottky GaN diodes are studied using the Fourier transform deep level transient spectroscopy. An electron trap level was detected in the range of energies at EcEt=0.23–0.27 eV with a capture cross-section of the order of 10−19–10−16 cm2 for both the p+/n and n-type Schottky GaN diodes. For one set of p+/n diodes with a structure of Au/Pt/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au and the n-type Schottky diodes, two other common electron traps are found at energy positions, EcEt=0.53–0.56 eV and 0.79–0.82 eV. In addition, an electron trap level with energy position at EcEt=1.07 eV and a capture cross-section of σn=1.6×10−13 cm2 are detected for the n-type Schottky diodes. This trap level has not been previously reported in the literature. For the other set of p+/n diodes with a structure of Au/Ni/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au, a prominent minority carrier (hole) trap level was also identified with an energy position at EtEv=0.85 eV and a capture cross-section of σn=8.1×10−14 cm2. The 0.56 eV electron trap level observed in n-type Schottky diode and the 0.23 eV electron trap level detected in the p+/n diode with Ni/Au contact are attributed to the extended defects based on the observation of logarithmic capture kinetics.  相似文献   

3.
The effect of irradiation with 1-MeV neutrons on electrical properties of Al-based Schottky barriers and p+-n-n+ diodes doped by ion-implantation with Al was studied; the devices were formed on the basis of high-resistivity, pure 4H-SiC epitaxial layers possessing n-type conductivity and grown by vapor-transport epitaxy. The use of such structures made it possible to study the radiation defects in the epitaxial layer at temperatures as high as 700 K. Rectifying properties of the diode structures were no longer observed after irradiation of the samples with neutrons with a dose of 6×1014 cm?2; this effect is caused by high (up to 50 GΩ) resistance of the layer damaged by neutron radiation. However, the diode characteristics of irradiated p+-n-n+ structures were partially recovered after an annealing at 650 K.  相似文献   

4.
Mesa epitaxial 4H-SiC-based p +-p-n 0-n + diodes have been fabricated and their reverse recovery characteristics have been measured in modes typical of fast semiconductor current breakers, drift step recovery diodes, and SOS diodes. It has been found that, after the short (~10 ns) pulsed injection of nonequilibrium carriers by a forward current with a density of 200–400 A cm?2 and the subsequent application of a reverse voltage pulse (with a rise time of 2 ns), diodes can break a reverse current with a density of 5–40 kA cm?2 in a time of about (or less than) 0.3 ns. A possible mechanism for ultrafast current breaking is discussed.  相似文献   

5.
The forward-biased current-voltage characteristics of p+-n-n+ and n+-p-p+ epitaxial diodes are derived theoretically. Effects of the energy-gap shrinkage, the high-low junction built-in voltage, the high-level injection, and the minority-carrier life time on the forward-biased current-voltage characteristics are included. Good agreements between the theoretically derived results and the experimental data of Dutton et al. are obtained. The developed theory predicts that the leakage of the high-low junction is dominated by the recombination of minority carriers in the highly doped substrate, not by the recombination of minority carriers in the high-low space charge region, which is opposite to the previous prediction of Dutton et al.  相似文献   

6.
7.
Photoluminescence and deep-level transient spectroscopy are used to study the effect of irradiation with fast neutrons and high-energy Kr (235 MeV) and Bi (710 MeV) ions on the optical and electrical properties of high-resistivity high-purity n-type 4H-SiC epitaxial layers grown by chemical vapor deposition. Electrical characteristics were studied using the barrier structures based on these epitaxial layers: Schottky barriers with Al and Cr contacts and p+-n-n+ diodes fabricated by Al ion implantation. According to the experimental data obtained, neutrons and high-energy ions give rise to the same defect-related centers. The results show that, even for the extremely high ionization density (34 keV/nm) characteristic of Bi ions, the formation of the defect structure in SiC single crystals is governed by energy losses of particles due to elastic collisions.  相似文献   

8.
By using electron-beam-induced current (EBIC) and cathodoluminescence (CL) techniques, we characterized the electrical and optical properties of stacking faults (SFs) in 4H-SiC p +/−n junctions and compared with those in Schottky diodes. In the EBIC images, SFs penetrating the p +/−n junction are bright in the n region and dark in the p + region, while SFs observed in the Schottky diode are only bright. In CL measurements, a characteristic peak (417 nm) appears at SFs in the n region, similar to those observed in Schottky diodes. The 417-nm peak, however, does not occur obviously at either the p + layer or within the depletion region. The reason for the absence of this emission is discussed in terms of band bending at the junction.  相似文献   

9.
Silicon p +-n junction diodes irradiated with 3.5-MeV electrons (with the dose of 4 × 1016 cm?2) are studied. The diodes’ inductance (L) was measured at a frequency f = 1 MHz with the amplitude of alternating current equal to 0.25 mA. Simultaneously with measurements of L at alternating current, a direct current was passed through the forward-biased diode, which brought about the injection of minority charge carriers into the base. In order to identify both of the mechanisms that give rise to the inductive-type impedance in irradiated diodes with the p +-n junction and the main radiation defects that are directly involved in the formation of this impedance, irradiated samples were annealed isochronously in the temperature range T a = 225–375°C with sub-sequent study of the main characteristics of the defects by deep-level transient spectroscopy. It is shown that the inductive-type impedance in irradiated diodes is caused by the processes of capture and retention of charge carriers injected into the base at the trapping centers for a time ~1/2f, i.e., for a half-period of oscillations. It is also shown that the trapping centers are the vacancy-oxygen complexes introduced by irradiation with electrons.  相似文献   

10.
We have prepared the Au/PbS/n-6H-SiC Schottky diodes with interface layer and the reference Au/n-6H-SiC/Ni Schottky diodes without interface layer to realize Schottky barrier height (SBH) modification in the Au/SiC Schottky diodes. The BH reduction has been succeeded by the PbS interlayer to modify the effective BH by influencing the space charge region of the SiC. The PbS thin layer on the SiC was formed by the vacuum evaporation. The SBH values of 0.97 and 0.89 eV for the samples with and without the interfacial PbS layer were obtained from the forward bias current-voltage (I-V) characteristics. X-ray diffraction (XRD) study was carried out to determine the structural formation of the PbS on SiC. The reduction of the BH in the Au/PbS/n-6H-SiC Schottky diodes has been attributed to the fact that the interface states have a net positive interface charge in metal/n-type semiconductor contact, and thus the positive space charge Qsc in the Au/PbS/n-6H-SiC Schottky diodes becomes smaller than if the interface state charges Qss were absent. The experimental carrier concentration value of 4.73 × 1017 cm−3 obtained from the forward and reverse bias capacitance-voltage characteristics for the Au/PbS/n-6H-SiC contacts is lower than the value of 5.52 × 1017 cm−3 obtained for the reference diode, and this is an evidence of the reduction of the BH by the modification of the space charge density of the SiC.  相似文献   

11.
In this paper it is considered an influence of gamma-radiation 60Co, microwave and ultrasonic processing on electro-physical properties and relaxation of internal stresses in Au-Ti(W, Cr, TiB x )-GaAs contacts, based on GaAs plate, containing n-n + structures of GaAs. Correlation between radius of curvature of GaAs plates and contact parameters is detected. It is shown experimentally, that modification of electro-physical parameters of diodes with Schottky barrier, based on GaAs is specified by internal stresses relaxation in gallium arsenide structures with contacts.  相似文献   

12.
4H-SiC Schottky barrier diodes (SBDs) were fabricated and characterized from room temperature to 573 K using HfNxBy as Schottky electrodes. The results are compared to SBDs fabricated using other electrodes that include Ni, Pt, Ti and Au. The Schottky barrier height Φb for as-deposited HfNxBy/n−/n+ diodes, determined from room temperature current-voltage characteristics, is 0.887 eV. This is lower than those of SBDs fabricated using other metals such as Au, where Φb is 1.79 eV. The HfNxBy/n−/n+ diodes studied have a much higher on-resistance Ron of around 38.24 mΩ-cm2, which is about four times that of Au/n−/n+ diodes, due to the higher sheet resistance of the sputtered HfNxBy electrode layer. The barrier height Φb and ideality factor η of the HfNxBy/n−/n+ diodes remain almost unchanged after 400 and 750 °C anneal in N2. This suggests excellent thermal and chemical stability of HfNxBy in contact with 4H-SiC.  相似文献   

13.
Computer simulation of various Schottky-barrier structures is carried out to investigate the large-signal properties of these devices. Comparison between Schottky-barrier devices and their p-n junction counterparts are also made to evaluate the potential and limitations of these devices and to explain the difference in performance between them. It is shown that among various Schottky-barrier structures, the M-n-i-p+ structure is the most powerful one and the M-n-p-p+ device is the most efficient one. Furthermore, Schottky-barrier devices with low barrier heights for minority carriers (less than 0.2 eV) are capable of producing power levels close to the generated power of p-n junction devices. Investigation of the temperature dependence of the large-signal performance of these devices shows that Schottky barriers are more sensitive and exhibit their optimum performance close to room temperature value. At low temperature, the output power is limited by the low minority carrier injection, whereas at high temperature the limitation is due to the velocity-modulation losses in the injection and low-field regions of the device.  相似文献   

14.
It is shown experimentally for the first time that the operation of GaAs drift step-recovery diodes produced on the basis of p+-p0-n0-n+ is accompanied by the generation of ultrahigh-frequency oscillations in the form of trains of short pulses with a duration of ~10 ps. The amplitude and repetition frequency of these pulses are as high as ~100 V and ~(10–100) GHz, respectively. The phenomena of delayed reversible wave breakdown and excitation of ultrahigh-frequency oscillations in the structures of GaAs step-recovery diodes are found to open up new avenues for progress both in the physics and technology of semiconductor devices based on GaAs structures and in the technology of ultrahigh-frequency systems and devices that deal with pulsed signals of picosecond-scale duration.  相似文献   

15.
Measurements of the doping profile resulting from the diffusion of Cd into lowly-doped n-type InP are reported. The measurements were taken with Au Schottky contacts. In order to probe the doping profile in its entirety with the limited resolution depth of the Schottky diodes, thin layers of the diffused samples were removed by chemical etching in a well-controlled fashion. The etching procedure leading to smooth crystal surfaces is described in detail. The diffusion profile of Cd is characterized by a flat portion in the low 1018 cm?3 extending to a sharp gradient coinciding with the shallow diffusion front detectable by cleaving and stain etching. Between the shallow and second diffusion front very low p-type doping is found whereas beyond the second diffusion front the n-type conductivity of the substrate is attained. Thus Cd leads to a p+pn transition in n?-InP.  相似文献   

16.
The purpose of this paper is to analyze interface states in Al/SiO2/p-Si (MIS) Schottky diodes and determine the effect of SiO2 surface preparation on the interface state energy distribution. The current-voltage (I-V) characteristics of MIS Schottky diodes were measured at room temperature. From the I-V characteristics of the MIS Schottky diode, ideality factor (n) and barrier height (ΦB) values of 1.537 and 0.763 eV, respectively, were obtained from a forward bias I-V plot. In addition, the density of interface states (Nss) as a function of (Ess-Ev) was extracted from the forward bias I-V measurements by taking into account both the bias dependence of the effective barrier height (Φe), n and Rs for the MIS Schottky diode. The diode shows non-ideal I-V behaviour with ideality factor greater than unity. In addition, the values of series resistance (Rs) were determined using Cheung’s method. The I-V characteristics confirmed that the distribution of Nss, Rs and interfacial insulator layer are important parameters that influence the electrical characteristics of MIS Schottky diodes.  相似文献   

17.
A new p-n-n+ diode model for circuit transient analysis is developed. In contrast to existing circuit models, this model reflects all step-recovery diode (SRD) effects during switching on and off, including “ramp” of slow recovery phase. It is accomplished by taking into account the dynamic physical phenomena in the p-n-n+ diodes when switched. A non-linear dynamic diffusion capacitance of the diode model is determined by the dependence of the instantaneous base charge on the instantaneous diode voltage.The accuracy of the presented model is verified by comparison of the calculated and measured wave forms of some pulse circuits.The present model has been proved to be more accurate than SRD models previously published.  相似文献   

18.
The capacitance-voltage-temperature (C-V-T) and conductance-voltage-temperature (G/w-V-T) characteristics of metal-semiconductor (Al/p-Si) Schottky diodes with thermal growth interfacial layer were investigated by considering series resistance effect in the wide temperature range (80-400 K). It is found that in the presence of series resistance, the forward bias C-V plots exhibit a peak, and experimentally shows that the peak positions shift towards higher positive voltages with increasing temperature, and the peak value of the capacitance has a maximum at 80 K. The C-V and (G/w-V) characteristics confirm that the Nss and Rs of the diode are important parameters that strongly influence the electric parameters in (Al/SiO2/p-Si) MIS Schottky diodes. The crossing of the G/w-V curves appears as an abnormality when seen with respect to the conventional behaviour of the ideal MS or MIS Schottky diode. It is thought that the presence of a series resistance keeps this intersection hidden and unobservable in homogeneous Schottky diodes, but it appears in the case of inhomogeneous Schottky diode. In addition, the high frequency (Cm) and conductance (Gm/w) values measured under both reverse and forward bias were corrected for the effect of series resistance to obtain the real diode capacitance.  相似文献   

19.
A detailed study of the heat flow resistance measurements in a p+-v-n+ diode is studied in both forward and reverse biased conditions. Measurements are made by continuously switching the diode from the power dissipation state into the temperature measuring state. Safe operating power limits are identified for the diodes depending upon their mode of operation either as a microwave switch or as an IMPATT oscillator.  相似文献   

20.
Characteristics of Si p+n diodes with non-uniformly distributed compensating defects, which were introduced by implantation with Xe23+ ions, have been studied. The layer with the maximum concentration of the compensating defects was located in the vicinity of the metallurgical p-n junction. It is found that the presence of the defect layer results in non-monotonic dependences of the imaginary part of impedance (−Z″) and differential conductance (= −dI/dU) of the implanted diodes on reverse bias voltage U. An equivalent circuit of the irradiated diode is proposed, which allows us to approximate the measured frequency dependences of capacitance and conductance of the irradiated diodes and to determine values of diode barrier capacitance Cpn at different reverse bias voltages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号