首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed study of the heat flow resistance measurements in a p+-v-n+ diode is studied in both forward and reverse biased conditions. Measurements are made by continuously switching the diode from the power dissipation state into the temperature measuring state. Safe operating power limits are identified for the diodes depending upon their mode of operation either as a microwave switch or as an IMPATT oscillator.  相似文献   

2.
A quantitative model for the time behaviour of the walk-out phenomenon in planar p-n junctions is given. The injection of hot carriers into SiO2 and subsequent trapping of part of them is assumed to be the origin of the walk-out. The model is found to be in reasonable agreement with the experimental results on both p+?n and n+?p junctions. The parameters in the model are discussed in relation with the experiments.  相似文献   

3.
An earlier calculation of the noise due to generation of carriers in the space charge region in a p-n silicon diode by Lauritzen and by Scott and Strutt is corrected for the fact that the field distribution in the space charge region of a p-n junction is linear instead of uniform. If the noise is expressed as SI(f) = 2eIΓ2, we find Γ2 = 1115 in a p+n or n+p junction, instead of Γ2 = 1015 found previously.  相似文献   

4.
Silicon p-n-I-M devices with thin insulating layers (thicknesses ? 30 A?), named MTIS devices, have been developed. The two terminal device shows an S-shaped negative resistance characteristics similar to a Schockley diode (or p-n-p-n diode). Typically the threshold and sustaining voltages are 10 ~ 15 and 1.3 ~ 2 volts, respectively. The former however can be controlled by optical illumination. Turn-on time including delay is less than 2 nsec and turn-off time ? 1 nsec or less. A thyristor-like device with its third terminal connected to the n-layer shows switching operation controllable by this terminal. A monolithic linear array of p-n-I-M diodes with 30 μm spacing operates as a shift register through coupling of adjacent diodes. Life of the two terminal devices recorded at present is over 1.5 × 104 hr. These devices can be applied to low power and high-speed electrical switching and also to optical switching and integrated logic circuits.  相似文献   

5.
A high injection theory of open circuit voltage decay in a p-n junction diode is given. The theory takes into account the saturation of junction voltage at high injections and coupling between emitter and base of the diode. The results are in qualitative agreement with the available experimental results. In particular the theory explains the plateau which has been observed in most experimental results on the open circuit voltage decay at high injections.  相似文献   

6.
Current-transport properties of Al-n-p silicon Schottky-barrier diodes have been studied both experimentally and theoretically. An analytical model for the I-V characteristic of a metal-n-p Schottky barrier diode has been developed by using an interfacial layer-thermionic-diffusion model. Assuming a Gaussian distribution for the implanted profile, the barrier-height enhancement and ideality factor have been derived analytically. Using low energy (25 KeV) arsenic implantation with the dose ranged form 8 × 1010/cm2 to 1012/cm2, Al-n-p silicon Schottky barrier diodes have been fabricated and characterized. Comparisons between the experimental measurements and the results of computer simulations have been performed and satisfactory agreements between these comparisons have been obtained. The reverse I–V characteristics of the fabricated Al-n-p silicon Schottky barrier diodes can also be well simulated by the developed model.  相似文献   

7.
A new version of the equivalent circuit of the space-charge region of the reverse biased p-n junction is evaluated and the expressions for the circuit parameters are given. The basic idea is to separate the equivalent circuit in to the “conductive” and “displacement” branches and in this way the equivalent circuit parameters have physical meaning. The results are applicable to conditions of the finite multiplication factors and unequal ionization coefficients in a wide range of frequency and in the presence of the generation of carriers (thermal or outside induced) in the space-charge region. The numerical results for two complementary abrupt silicon p-n junctions and for low-frequency are given. The equivalent circuit of the multiplication noise source of the p-n junction is discussed.  相似文献   

8.
韦文生  张春熹 《半导体学报》2016,37(6):064007-6
Using p+-type crystalline Si with n+-type nanocrystalline Si (nc-Si) and n+-type crystalline Si with p+-type nc-Si mosaic structures as electrodes, a type of power diode was prepared with epitaxial technique and plasma-enhanced chemical vapor deposition (PECVD) method. Firstly, the basic p+-n--n+-type Si diode was fabricated by epitaxially growing p+- and n+-type layers on two sides of a lightly doped n--type Si wafer respectively. Secondly, heavily phosphorus-doped Si film was deposited with PECVD on the lithography mask etched p+-type Si side of the basic device to form a component with mosaic anode. Thirdly, heavily boron-doped Si film was deposited on the etched n+-type Si side of the second device to form a diode with mosaic anode and mosaic cathode. The images of high resolution transmission electronic microscope and patterns of X-ray diffraction reveal nanocrystallization in the phosphorus- and boron-deposited films. Electrical measurements such as capacitance-voltage relation, current-voltage feature and reverse recovery waveform were carried out to clarify the performance of prepared devices. The important roles of (n-)Si/(p+)nc-Si and (n-)Si/(n+)nc-Si junctions in the static and dynamic conduction processes in operating diodes were investigated. The performance of mosaic devices was compared to that of a basic one.  相似文献   

9.
A simplified theory of the p-i-n diode is developed for the case of heavy injection in the base, and light injection in the end regions. The current I is taken as the fundamental parameter. The carrier densities n1 and n2 at the base boundaries are given directly as functions of the current I by means of simple approximate expressions. The approximation improves with increasing base width and increasing current. It is always within 15% of the correct value for base widths of about 2 diffusion lengths or higher. The accuracy is much better still on the voltage drop across the device, as calculated from the approximate equations for the carrier densities within the base.  相似文献   

10.
In this paper, an extension of the ideal-diode analysis for the heavily-doped p-n junction diode is proposed. The heavy doping effects such as carrier degeneracy and band gap narrowing are accounted for by using a tractable empirical approximation for the reduced Fermi-energy given by[12] and employing effective intrinsic density. Under the assumption of low-level injection, it is found that the injected minority-carrier current, and the charge storage in the quasi-neutral regions should depend exponentially on values of F(Y), where F(Y) is a function of dopant dentisy at the depletion edge of the quasi-neutral emitter (or) base region of the p-n junction. Results of our calculations of excess hole current for the short base and the long-base diode show significant change from the values predictged by the conventional diode theory.  相似文献   

11.
The influence of crystal damage on the properties of implanted p-n junctions has been studied by variation of the amount of initial damage, variation of the recovery process, and variation of the residual damage. This was done by carrying out implantations at - 196, 25 and 700°C with 1015 B+/cm2 at an energy of 50 keV, and at 25°C with 1015 BF2+ at an energy of 250 keV and 1015 Ga+/cm2 at an energy of 70 keV. Substrate orientations of both 〈111〉 and 〈100〉 were used, and annealing was done in a temperature range between 400 and 1100°C. Gettered as well as non-gettered slices were used for 〈111〉 oriented substrates. The diode properties were analyzed with the aid of Shockley-Read-Hall recombination statistics. Depending upon crystal history and processing, different traps are found to dominate the reverse current. Traps caused by the gettering of contamination as well as those caused by the damage itself play a role. The number of traps is found to be smaller than 1012/cm3 for well annealed diodes, resulting in a reverse current density of 0.2 nA/cm2 at 1 V reverse bias.  相似文献   

12.
High frequency IMPATT oscillations followed under certain conditions by reversible impact ionization wave breakdown of the p +-n-n + diode structure have been experimentally observed for the first time in a drift step recovery diode operating in the avalanche breakdown mode after a fast voltage restoration of the p-n junction.  相似文献   

13.
A method to obtain nonlinear distortion of small a.c. signals in a one-dimensional bipolar transistor is described. The fundamental physical semiconductor equations are the basis from which the small-signal relations are derived. A finite difference scheme is employed to achieve space-discretization; temporal dependence of input-output relations is given in terms of Volterra functional series. The internal distribution of quasi-Fermilevels, potential and excess carrier densities is discussed and some computational results are produced. The influence of frequency, bias point, and external circuit elements on distortion properties is illustrated. Throughout, a common-emitter p-n-p transistor structure is assumed. The theory of Volterra series analysis is briefly summarized.  相似文献   

14.
A twodimensional Poisson equation is solved as part of a program to improve breakdown characteristics of a planar p-n junction by using a field limiting ring. The influences of n? concentration and n? layer width of p+-n?-n+ diode are investigated. Higher n? concentration and smaller n? width make optimum distance between anode and field limiting ring smaller. Breakdown voltages predicted by optimising method reported agree well with the experimental results.  相似文献   

15.
C–V index n for hyperabrupt p+-n junctions with exponentially retrograded n-region has been computed numerically for different values of parameters characterizing the impurity profile and the results have been plotted graphically. Although n is found to vary with the bias across the junction for any given impurity distribution, the maximum value nmax of n is determined only by the ratio of the background concentration to the crossover concentration in the retrograded region. By making this ratio R0 smaller and smaller, values of n substantially larger than unity can be obtained. Practical considerations, however, limit the maximum value of n to about 10. An empirical relation expressing nmax as a function of the ratio R0 has been obtained. Calculated results are compared with the values of n measured on hyperabrupt junctions fabricated by a double diffusion process.  相似文献   

16.
The radiative transfer theory for semiconductors recently developed is applied to p-n junctions under conditions of low level injection. By virtue of the interaction of the radiation field with free carriers across the depletion layer or space charge region, the saturation current density j0 in Shockley's expression j = j0[exp (qV/kT) ? 1] for the diode current is reduced at high doping levels from the customary value which neglects radiation effects altogether. While the effect is insignificant in p-type material, it is noticeable in n-type material owing to the small magnitude of the electron effective mass in direct gap III–V compounds. At an equilibrium electron concentration of 2 × 1018 cm?3 in GaAs, a reduction of j0 by 15% is predicted.  相似文献   

17.
The effect of irradiation with 1-MeV neutrons on electrical properties of Al-based Schottky barriers and p+-n-n+ diodes doped by ion-implantation with Al was studied; the devices were formed on the basis of high-resistivity, pure 4H-SiC epitaxial layers possessing n-type conductivity and grown by vapor-transport epitaxy. The use of such structures made it possible to study the radiation defects in the epitaxial layer at temperatures as high as 700 K. Rectifying properties of the diode structures were no longer observed after irradiation of the samples with neutrons with a dose of 6×1014 cm?2; this effect is caused by high (up to 50 GΩ) resistance of the layer damaged by neutron radiation. However, the diode characteristics of irradiated p+-n-n+ structures were partially recovered after an annealing at 650 K.  相似文献   

18.
Depletion layer formation and current-voltage characteristics are described for the general semiconductor p-n-p (n-p-n) structure in which the impurity or defect centre is able to communicate with both sets of transport levels. All possibilities for current lie within the region bounded on one side by the essentially vertical Shockley-Prim punch-through characteristic and on the other side by the square-law Mott-Gurney space-charge-limited characteristic. If the impurity levels lie near the mid-gap position a variety of characteristics within this region can be expected. Representative current-voltage characteristics have been computed and are described for a typical silicon structure.  相似文献   

19.
Using the same basic equations as Kazarinov et al.[2], but assuming that the product of the electron drift velocity and of the electron lifetime remains constant, we have derived a new formula for the forward d.c. current—voltage characteristic distinguished by the saturated voltage. We have shown that this formula can describe the measured characteristics of some GaAs p-i-n and n-i-n diodes.  相似文献   

20.
1/f noise measurements in the base current and the collector current of NEC 57807 n+-p-n microwave transistors show that the noise is not of the mobility fluctuation type, since the current dependence of SIR(f) and SIC(f) differs from the theoretical predictions. The low collector current 1/f noise makes it doubtful whether the mobility fluctuation concept is applicable in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号