首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of preparing self-doped p- and n-type and In-doped n-type CdTe thin-films for photovoltaic applications has been developed using r.f. sputtering. Ohmic contacts to n-type films with contact resistivity less than 10?2 Ω — cm2 have been obtained. Schottky barrier diode test devices, formed by evaporation of various metals including Au on n-CdTe films, have been examined for electrical and photovoltaic evaluation of the sputtered films. Although S.B. diodes based on In doped films, prepared under Cd overpressure, show promising electrical and photovoltaic performance (Voc ~ 315 mV, Isc ~ 4.6mA/cm2), much improvement remains to be made by further control of dopant concentration and structural details of films.  相似文献   

2.
Amorphous CdS/single-crystal CdTe solar cells were grown on GaAs substrates by metalorganic chemical vapor deposition. The structures of the films and the electrical properties of the devices were characterized. Highly conducting arsenic-doped ZnTe was grown on GaAs(100) substrates as the buffer layer for CdTe growth. By use of a ~30-nm ZnTe buffer layer, a p-CdTe film with a doping level of ~5×1016 cm?3 was achieved. The hole concentration of p-CdTe increased with increasing VI/II ratio under a high As concentration during growth. From temperature-dependent Hall transport measurements, the ionization energy of the As acceptor in the p-CdTe was estimated to be approximately 88 meV. Ohmic behavior of the junctions between CdTe/ZnTe and ZnTe/GaAs was also confirmed. The solar cell performance of this structure, for example an open circuit voltage of 0.63 V, could be improved if the crystal quality of the CdTe film is optimized and the dislocation density of the CdTe film is minimized.  相似文献   

3.
The electrical properties of a fabricated Au/polymethylmethacrylate (PMMA)/n-InP Schottky barrier diode have been analyzed for different annealing temperatures using current–voltage (IV) and capacitance–voltage (CV) techniques. It is observed that the Au/PMMA/n-InP structure shows excellent rectifying behavior. The extracted barrier height and ideality factor of the as-deposited Au/PMMA/n-InP Schottky contact are 0.68 eV (JV)/0.82 eV (CV) and 1.57, respectively. However, the barrier height (BH) of the Au/PMMA/n-InP Schottky contact increases to 0.78 eV (JV)/0.99 eV (CV) when the contact is annealed at 150°C for 1 min in nitrogen atmosphere. Upon annealing at 200°C, the BH value decreases to 0.72 eV (JV)/0.90 eV (CV) and the ideality factor increases to 1.48. The PMMA layer increases the effective barrier height of the structure by creating a physical barrier between the Au metal and the n-InP. Cheung’s functions are also used to calculate the series resistance of the Au/PMMA/n-InP structure. The interface state density (N ss) is found to be 6.380 × 1012 cm?2 eV?1 and 1.916 × 1012 cm?2 eV?1 for the as-deposited and 150°C-annealed Au/PMMA/n-InP Schottky contacts, respectively. These results indicate that the interface state density and series resistance have a significant effect on the electrical characteristics of Au/PMMA/n-InP Schottky barrier devices. Finally, it is noted that the diode parameters change with increasing annealing temperature.  相似文献   

4.
We present reverse bias current (dark current) characteristics of a two-dimensional monolithic pixel-type nuclear radiation detector array fabricated using metalorganic vapor-phase epitaxy (MOVPE)-grown thick CdTe epitaxial layers on Si substrate. The (14?×?8) pixel array was formed by cutting deep vertical trenches using a dicing saw, where each pixel possesses a p-CdTe/ n-CdTe/n +-Si heterojunction diode structure. The dark currents showed pixel-to-pixel variations when measured at higher applied biases exceeding 100?V. The dark current had a dependence on the pixel thickness, where pixels with lower CdTe thickness exhibited higher currents. Moreover, the temperature dependence of the dark current revealed that a deep level with activation energy of around 0.6?eV is responsible for the observed dark currents and their pixel-to-pixel variation. We discuss that the effective ratio of Te to Cd at the growth surface is a major factor that controls the thickness variation, and is also responsible for the formation of 0.6?eV deep levels.  相似文献   

5.
The electrical properties of vacuum-deposited CdTe thin films as functions of temperature, frequency, film thickness and applied field for various substrate temperatures are reported. A detailed examination of these results reveals the presence of an electron trap which is 0.58 eV below the conduction band edge with a density of (5?10) × 1015 cm?3. The position of this trap correlates well with the reports of other investigators for CdTe single crystals and thin films. The dielectric constant evaluated (8.70) at 1 kHz is independent of film thickness. The AC conductivity of these samples investigated is proportional to ωn, a being the angular-frequency and n a temperature-dependent quantity; the value of n decreases with increase in temperature. Analysis of the law-temperature frequency-dependent conductivity indicates that hopping is the dominant mechanism of conduction.  相似文献   

6.
CdTe thin films of different thicknesses were deposited on polymer substrates for flexible optical devices applications. X-ray diffractogram of different thicknesses for CdTe films are measured and their patterns exhibit polycrystalline nature with a preferential orientation along the (111) plane. The optical constants of CdTe films were calculated based on the measured transmittance spectral data using Swanepoel's method in the wavelength range 400–2500 nm. The refractive index n and absorption index k were calculated and the refractive index exhibits a normal dispersion. The refractive index dispersion data followed the Wemple–DiDomenico model based on single oscillator. The oscillator dispersion parameters and the refractive index no. at zero photon energy were determined. The possible optical transition in these films is found to be allowed direct transition with energy gap increase from 1.46 to 1.60 eV with the increase in the film thickness. CdTe/flexible substrates are good candidates in optoelectronic devices  相似文献   

7.
Annealing conditions of CdTe layers grown on Si substrates by metalorganic vapor-phase epitaxy were studied. Typically, 3-μm-thick n-type (211) CdTe layers were annealed for 60 s in flowing hydrogen at atmospheric pressure by covering their surfaces with bulk CdTe wafers. At annealing temperatures above 700°C, improvement of crystal quality was confirmed from full-width at half-maximum values of double-crystal rocking-curve measurements and x-ray diffraction measurements. Photoluminescence measurements revealed no deterioration of electrical properties in the annealed n-CdTe layers. Furthermore, annealing at 900°C improved the performance of radiation detectors with structure of p-like CdTe/n-CdTe/n +-Si substrate.  相似文献   

8.
Development of an electron-collecting-type pixel array by use of an epitaxially grown thick single-crystal CdTe layer on p +-Si substrate is discussed. To achieve such an array with an n-CdTe/p-like CdTe/p +-Si heterojunction diode structure, charge transport at the p-like CdTe/p +-Si heterointerface was studied. It was confirmed that ohmic conduction via holes occurs at this interface. A single-element detector was then fabricated by growth of 40 μm thick undoped p-like CdTe then 5 μm thick n-CdTe layers on the p +-Si substrate. Rectification by the diode detector was good, and its energy-resolving capability was demonstrated by detection of gamma peaks from the 241Am source, thus confirming the feasibility of using this structure for fabrication of an electron-collecting-type array.  相似文献   

9.
The comparative study of dark current-voltage and capacitance-voltage characteristics of the CdS/CdTe/Cu/Au and CdS/CdTe/ITO thin-film solar cells is carried out. The physical properties of the p +-CdTe/n +-ITO rear contact are experimentally determined for the first time.  相似文献   

10.
The conductivity, morphology, and deep levels in polycrystalline CdTe are studied. Undoped p-CdTe is grown from the vapor phase by low-temperature methods of direct Cd and Te chemical reaction and CdTe vacuum sublimation at P min. Chlorine-doped CdTe is also grown. The resistivity of the grown samples is ~105–109 Ω cm. After annealing in liquid cadmium or in cadmium vapor at ~500°C, the conductivity type changes, the free-carrier concentration in the undoped and doped samples increases to 4 × 1015 and ~2 × 1016 cm?3, respectively. For all samples, a defect ground level of ~0.84 eV and continuous background are observed in DLTS spectra after annealing. A correlation between the primary-defect and free-carrier concentrations in undoped and doped CdTe is observed. Chlorine is a main residual impurity in the undoped samples. It is assumed that the defect is a complex including chlorine and observed structural defects in CdTe.  相似文献   

11.
The electrical characteristics of CdTe-based Schottky-diode detectors of X-ray and γ radiation are studied. Experimental data are obtained for Al/p-CdTe diodes with a substrate resistivity from 102 to 109 Ωcm (300 K). The obtained results are interpreted in the context of the Sah-Noyce-Shockley theory of generation-recombination, taking into account the special features of the Schottky diode. It is shown that, when semi-insulating CdTe is used, the considerable forward currents observed are caused by electron injection into the substrate.  相似文献   

12.
We present an analysis of Schottky barriers in n-InP made by incorporating a thin native oxide. An oxidation technique using nitric acid under illumination produces an oxide layer with uniform composition distribution within the layer. The growth rate is interpreted as being partially limited by diffusion presumably of oxygen through oxide. The Au Schottky barrier formed on a 40–80 Å thick oxide layer exhibits little degradation of the ideality factor n (1.04 < n < 1.10) and an increase of the barrier height by greater than 0.3 eV, resulting in at least a 10?4 times smaller reverse leakage current density, compared with conventional Au-InP barriers. The barrier height increase is analysed by a generalised model, and is found to be produced by the existence of fixed negative charges in the oxide layer. From the present analysis, a surface state density of 6.0 × 1012 cm?2 eV?1 and an equivalent surface density of negative charges of 2.8 × 1012 cm?2 are determined independently. The origins of these, particularly of the surface states, are considered in relation to the P vacancies at the oxide-InP interface.  相似文献   

13.
A new technology of chemical surface deposition is developed, and thin CdS films (35–100 nm) on the p-CdTe substrates are obtained. Electrical and photoelectric properties of n-CdS/p-CdTe heterojunctions are studied, and it is shown that the developed method provides high efficiency of photoconversion in the range restricted by the CdTe and CdS band gaps. It is shown that the method of chemical surface deposition of CdS can be used in the design of thin-film n-CdS/p-CdTe.  相似文献   

14.
A modified Engelken’s kinetic model, which is based on the Butler–Volmer equation, was developed and simulated to predict the potential at which perfect stoichiometry is achieved in linear-sweep voltammetry. The simulation results were verified experimentally using electrodeposition and the following were determined: the exact potential at which intrinsic CdTe with perfect stoichiometry can be electrodeposited and the deviation from stoichiometry, which can be controlled accurately by adjustment of the electrodeposition potential. Moreover, we found that native nondegenerate p-CdTe and n-CdTe could also be deposited. In this research, the simulation parameters for Engelken’s model were established and corrected. Good agreement was found between the theoretical and experimental results, and accurate compound compositions were predicted.  相似文献   

15.
A method for determining the surface state density in Schottky diodes taking into account both I–V and C–V data while considering the presence of a deep donor level is presented. The model assumes that the barrier height is controlled by the energy distribution of surface states in equilibrium with the metal and the applied potential and does not include, explicitly, an interfacial layer. The model was applied to extract interface state densities of Au-nGaAs guarded Schottky diodes fabricated from bulk and VPE (100) GaAs with carrier conentrations between 3 × 1015 and 8 × 1016 cm?3. These diodes exhibited ideality (n) factors of approximately 1.02 and room temperature saturation current densities ~10?8 A/cm2. This model is in substantial agreement with forward bias measurements over the 77–360°K temperature range investigated, in that a temperature-independent energy distribution of interface states was obtained. In reverse bias the interface state model is most valid with the higher carrier concentration material and at high temperature and low bias voltage. Typical interface state densities from 0.07 eV above the zero bias Fermi level to 0.01 eV below the Fermi level were 2 × 1013 cm?2 eV?1. The validity of the model under reverse bias is restricted by a non-thermionic reverse current, thought to be enhance field emission from traps.  相似文献   

16.
17.
Deep level defects in both p+/n junctions and n-type Schottky GaN diodes are studied using the Fourier transform deep level transient spectroscopy. An electron trap level was detected in the range of energies at EcEt=0.23–0.27 eV with a capture cross-section of the order of 10−19–10−16 cm2 for both the p+/n and n-type Schottky GaN diodes. For one set of p+/n diodes with a structure of Au/Pt/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au and the n-type Schottky diodes, two other common electron traps are found at energy positions, EcEt=0.53–0.56 eV and 0.79–0.82 eV. In addition, an electron trap level with energy position at EcEt=1.07 eV and a capture cross-section of σn=1.6×10−13 cm2 are detected for the n-type Schottky diodes. This trap level has not been previously reported in the literature. For the other set of p+/n diodes with a structure of Au/Ni/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au, a prominent minority carrier (hole) trap level was also identified with an energy position at EtEv=0.85 eV and a capture cross-section of σn=8.1×10−14 cm2. The 0.56 eV electron trap level observed in n-type Schottky diode and the 0.23 eV electron trap level detected in the p+/n diode with Ni/Au contact are attributed to the extended defects based on the observation of logarithmic capture kinetics.  相似文献   

18.
The CdTe:Si single crystals with Si concentration in the range of C Si 0 =2×1018–5×1019 cm?3 are grown by the Bridgman-Stockbarger method. The samples were of the n-and p-type with electrical conductivity σ=2×10?1–8×10?9 Ω?1 cm?1. Being heated in the temperature range 300–440 K, the p-CdTe crystals were annealed, and their conductivity decreased. The shape of the low-temperature (5–20 K) photoluminescence spectra of the samples are indicative of their high structural quality. The specific feature of the emission of the CdTe:Si crystals is its decrease in the intensity of all lines induced by donors as the samples are cut progressively closer to the ingot top. The results obtained indicate that the Si impurity, in contrast with Ge, Sn, and Pb, does not exhibit the compensating and stabilizing effect in CdTe.  相似文献   

19.
Co-evaporation of CdTe and Te has been reported to result in CdTe films with high hole concentrations. Higher carrier density should result in more efficient solar cells if the carrier lifetime is not effected. This achievement could have a large effect on CdTe technology, in which carrier density has been limited to the 1014–1015 cm?3 range. Reproducing the work from the open literature and analyzing the films in more detail revealed that material with a high hole concentration can be obtained by co-evaporating CdTe and Te. However, analysis of these films indicated that the measured high carrier density is not because of doping of the CdTe base material but because of an integrated network of Te present as its own phase within the CdTe matrix.  相似文献   

20.
The nonlinear behavior of the IV characteristics of symmetric contacts between a metal and degenerate n-GaN, which form oppositely connected Schottky diodes, is investigated at free-carrier densities from 1.5 × 1019 to 2.0 × 1020 cm–3 in GaN. It is demonstrated that, at an electron density of 2.0 × 1020 cm–3, the conductivity between metal (chromium) and GaN is implemented via electron tunneling and the resistivity of the Cr–GaN contact is 0.05 Ω mm. A method for determining the parameters of potential barriers from the IV characteristics of symmetric opposite contacts is developed. The effect of pronounced nonuniformity of the current density and voltage distributions over the contact area at low contact resistivity is taken into account. The potential-barrier height for Cr–n+-GaN contacts is found to be 0.47 ± 0.04 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号