首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Energy》2006,31(14):3041-3061
Decentralized energy systems are thought to have great potential for supplying electricity, cooling, and heating to buildings. A decentralized system combining a solid oxide fuel cell (SOFC) with an absorption chiller-heater (ACH) is proposed. The CO2-emissions and costs of using different configurations of this SOFC-based system to provide an office building in Tokyo with electricity, cooling and heating are calculated by using an SOFC-model and an absorption-chiller model together with data for cooling and heating loads measured at an office building in downtown Tokyo. The results are compared with the CO2-emissions and costs of a conventional system that obtains the base electricity requirements as well as electricity for an electric chiller–heater system from the central power grid. The fully decentralized SOFC-based energy system could result in a potential CO2 reduction of over 30% at an estimated cost increase of about 70% compared to the conventional system.  相似文献   

2.
The use of solar energy in buildings is an important contribution for the reduction of fossil fuel consumption and harmful emissions to the environment. Solar thermal cooling systems are still in their infancy regarding practical applications, although the technology is sufficiently developed for a number of years. In many cases, their application has been conditioned by the lack of integration between cooling and heating systems. This study aims to evaluate the potential of integrated solar absorption cooling and heating systems for building applications. The TRNSYS software tool was used as a basis for assessment. Different building types were considered: residential, office and hotel. The TRNSYS models are able to run for a whole year (365 days), according to control rules (self-deciding whether to operate in heating or cooling modes), and with the possibility of combining cooling, heating and DHW applications. Three different locations and climates were considered: Berlin (Germany), Lisbon (Portugal), and Rome (Italy). Both energy and economic results are presented for all cases. The different local costs for energy (gas, electricity and water) were taken into account. Savings in CO2 emissions were also assessed. An optimization of solar collector size and other system parameters was also analysed.  相似文献   

3.
This paper presents a systematic energetic, economical, and environmental assessment on a solar cooling system for a medium-sized office building in Los Angeles, California by means of system modeling. The studied solar cooling system primarily consists of evacuated tube solar collectors, a hot water storage tank, a single-effect LiBr–H2O absorption chiller, and a gas-fired auxiliary heater. System performance optimization and sensitivity analysis were conducted by varying two major parameters (i.e. storage tank volume and collector area). The results suggest that a trade-off exists between economic performance indicated by the equivalent uniform annual cost (EUAC) and the energetic/environmental performance indicated by the solar fraction and CO2 reduction percentage, respectively. The cost of carbon footprint reduction was defined and served as an indicator for the overall system performance. Based on this indicator, the optimal system design could be found for a solar cooling system. The approach adapted in this study can be applied to other buildings located in different climate zones to reveal the cost and benefits of solar cooling technologies and facilitate decision-making.  相似文献   

4.
J. Tiran 《Applied Energy》1981,9(2):121-130
An integrated system which utilise three sources of energy for the purpose of airconditioning (i.e. heating and cooling) a residential building is considered. The system includes a control unit which determines (according to a built-in programmed logic) which energy source is to be used. The system's three power provisions are: (a) line electricity, (b) electric power generated by an appropriate wind turbine and (c) a hot water system heated by solar collectors. System requirements and operation were simulated by a computer program which calculated the air-conditioning load and the energy provisions throughout a twenty-four hour period. In winter operation, about 68 per cent of the required heating was supplied by solar heating and 32 per cent by wind-generated power and in summer operation, in a typical day, all the required cooling energy was provided by wind-generated power.  相似文献   

5.
By surrounding the absorber-heat exchanger component of a solar collector with a glass-enclosed evacuated space and by providing the absorber with a selective surface, solar collectors can operate at efficiencies exceeding 50 per cent under conditions of ΔT/HT = 75°C m2/kW (ΔT = collector fluid inlet temperature minus ambient temperature, HT = incident solar radiation on a tilted surface). The high performance of these evacuated tubular collectors thus provides the required high temperature inputs (70–88°C) of lithium bromide absorption cooling units, while maintaining high collector efficiency. This paper deals with the performance and analysis of two types of evacuated tubular solar collectors intergrated with the two distinct solar heating and cooling systems installed on CSU Solar Houses I and III.  相似文献   

6.
The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, “tuning”, and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data was begun. This paper discusses the preliminary performance of the heating and cooling system.

During the period 1 August 1974–31 January 1975, approximately 40 per cent of the cooling load was provided by solar energy. Solar heating over the same period of time provided 86 per cent of the space heating load and 68 per cent of the domestic hot water heating load. These percentages represent a total solar contribution of 33,996 MJ delivered to load (8061 MJ to the cooling unit; 20,687 MJ to heating; 5248 MJ to hot water). Natural gas accounted for 22,442 MJ, total. In addition, preliminary analysis has provided several significant results associated with the operating characteristics of the solar system and the individual components.  相似文献   


7.
M. Iqbal 《Solar Energy》1979,22(1):77-79
Optimum collector slope for a liquid base active solar heating system employing flat-plate collectors was investigated. The optimum collector slope was studied as a function of (a) collector area, (b) yearly total heating load and (c) the ratio of space heating load to service hot water load. Collectors facing equator only were considered. Such a system was studied in four different Canadian locations having widely different climates. Under the above conditions, optimum collector slope varied with the amount of collector area employed. The optimum collector slope was invariant with the yearly total load itself, or the space heating to hot water load ratio. Contrary to the widely held belief, for the four locations investigated, the optimum collector slope varied from lat. ? 10° to lat. + 15°; depending upon fy, the fraction of load supplied by the solar system. When fy is in 10–20 per cent range, optimum collector slope is lat. ? 10° and increases almost linearly to lat.+ 15° at fy in 80 per cent range. Consequently, when the fraction of load by the solar system is low, a flat roof may be profitably employed. On the other hand, when the fraction by the solar system is high, a south facing (for northern hemisphere) vertical wall may be profitably employed.  相似文献   

8.
A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m2 of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided.  相似文献   

9.
This paper presents a time-dependent heat and mass transfer analysis of an open roof surface as a solar collector-regenerator system for absorption air-conditioning. The system consists of water evaporation from a lithium chloride solution (LiClH2O) flowing on the roof of a building. The analysis takes into account the variation of the solution temperature-concentration and hence the water evaporation from the absorbent solution along the flow length of the regenerator and the periodic variation of the solar intensity and the ambient air temperature. The effects of operational parameters, viz. solution flow rate, regenerator length, humidity ratio and the inlet solution conditions, on the time dependence of the water evaporation have been investigated. It is ascertained that about 2.5–4.0 kg of water can be evaporated per unit solar regenerator area per day under typical operating conditions, and for every kg of water evaporated in the regenerator, 1 kg of water can be evaporated in the evaporator of the absorption cooling system. The overall average daily COP of the cooling system is found to be in the range 0.36–0.57 for a typical hot and dry climate, and hence, the system is more attractive for solar air-conditioning.  相似文献   

10.
We present a comparison of solar thermal and solar electric cooling for a typical small office building exposed to two different European climates (Freiburg and Madrid). The investigation is based on load series for heating and cooling obtained previously from annual building simulations in TRNSYS. A conventional compression chiller is used as the reference system against which the solar options are evaluated with respect to primary energy savings and additional cost. A parametric study on collector and storage size is carried out for the solar thermal system to reach achieve the minimal cost per unit of primary energy saved. The simulated solar electric system consists of the reference system, equipped with a grid connected photovoltaic module, which can be varied in size. For cost comparison of the two systems, the electric grid is assumed to function as a cost-free storage. A method to include macroeconomic effects in the comparison is presented and discussed.Within the system parameters and assumptions used here, the grid coupled PV system leads to lower costs of primary energy savings than the solar thermal system at both locations. The presumed macroeconomic advantages of the solar thermal system, due to the non-usage of energy during peak demand, can be confirmed for Madrid.  相似文献   

11.
An absorption system can be used for space cooling as well as for space heating. This dual purpose may be achieved by using the system as heat pump in wintertime. Absorption heat pump heating may be an interesting alternative, particularly for countries where there is a shortage of electric power.When an absorption unit is used as heat pump, its mode of operation is not modified: the internal temperatures of the cycle are only raised. Commercially available LiBr units were tested as heat pumps. COP and heating capacity were considered as a function of cold source temperature for different temperatures of the useful heat. The COP arrived at 1.7, which must be considered a high value for a thermally driven heat pump.Simulations were carried out in order to compare the performance of “conventional” solar, solar assisted heat pump and the combined series system under two different climate conditions. The series system showed performance 25–75 per cent better than “conventional” solar alone.  相似文献   

12.
On a European level there is intense research activity to broaden the applications of solar thermal systems beyond their established domains (hot water, space heating support) and to foster their participation in the energy maps of the EU-Member States. Concentrated Solar Thermal (CST) systems are expected to play a key role in this effort, especially for achieving the medium and high temperatures needed, for electricity generation, for industrial applications but also for hybridized solar heating/cooling and desalination applications.This paper presents a proposal for implementation of a CST system in the building sector, based on a research carried out in the Laboratory of Environmental and Energy Efficient Design of Buildings and Settlements at the University of Thrace. Specifically, an integrated solar cooling system using parabolic trough solar collectors and double-effect chiller is discussed, used to cover the cooling needs of typical office building in Greece.As it was shown, the use of concentrating solar collectors leads to significantly higher output temperatures that can enable the use of two stage absorption chillers with a higher COP. Alternatively, when low or medium temperature heat is required, the use of CST systems takes less space to cope with it than traditional flat plate collectors. The combination of these parameters can contribute to removing key barriers associated with the broader diffusion of solar cooling technology, enhancing the potential to become more competitive to the conventional air conditioning technologies.  相似文献   

13.
M. Iqbal 《Solar Energy》1979,22(1):87-90
Optimum collector slope for a liquid base active solar heating system employing flat-plate collectors was investigated. The optimum collector slope was studied as a function of (a) collector area, (b) yearly total heating load and (c) the ratio of space heating load to service hot water load. Collectors facing equator only were considered. Such a system was studied in four different Canadian locations having widely different climates. Under the above conditions, optimum collector slope varied with the amount of collector area employed. The optimum collector slope was invariant with the yearly total load itself, or the space heating to hot water load ratio. Contrary to the widely held belief, for the four locations investigated, the optimum collector slope varied from lat. − 10° to lat. + 15°; depending upon fy, the fraction of load supplied by the solar system. When fy is in 10–20 per cent range, optimum collector slope is lat. − 10° and increases almost linearly to lat.+ 15° at fy in 80 per cent range. Consequently, when the fraction of load by the solar system is low, a flat roof may be profitably employed. On the other hand, when the fraction by the solar system is high, a south facing (for northern hemisphere) vertical wall may be profitably employed.  相似文献   

14.
In this paper, a transcritical carbon dioxide heat pump system driven by solar‐owered CO2 Rankine cycle is proposed for simultaneous heating and cooling applications. Based on the first and second laws of thermodynamics, a theoretical analysis on the performance characteristic is carried out for this solar‐powered heat pump cycle using CO2 as working fluid. Further, the effects of the governing parameters on the performance such as coefficient of performance (COP) and the system exergy destruction rate are investigated numerically. With the simulation results, it is found that, the cooling COP for the transcritical CO2 heat pump syatem is somewhat above 0.3 and the heating COP is above 0.9. It is also concluded that, the performance of the combined transcritical CO2 heat pump system can be significantly improved based on the optimized governing parameters, such as solar radiation, solar collector efficient area, the heat transfer area and the inlet water temperature of heat exchange components, and the CO2 flow rate of two sub‐cycles. Where, the cooling capacity, heating capacity, and exergy destruction rate are found to increase with solar radiation, but the COPs of combined system are decreased with it. Furthermore, in terms of improvement in COPs and reduction in system exergy destruction at the same time, it is more effective to employ a large heat transfer area of heat exchange components in the combined heat pump system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The present study deals with a small-scale solar-assisted absorption cooling system having a cooling capacity of 3.52 kW and was investigated experimentally under the climatic conditions of Taxila, Pakistan. Initially, a mathematical model was developed for LiBr/H2O vapor absorption system alongside flat-plate solar thermal collectors to achieve the required operating temperature range of 75°C. Following this, a parametric analysis of the whole system was performed, including various design and climate parameters, such as the working temperatures of the generator, evaporator, condenser, absorber, mass flow rate, and coefficient of performance (COP) of the system. An experimental setup was coupled with solar collectors and instruments to get hot water using solar energy and measurements of main parameters for real-time performance assessment. From the results obtained, it was revealed that the maximum average COP of the system achieved was 0.70, and the maximum outlet temperature from solar thermal collectors was 75°C. A sensitivity analysis was performed to validate the potential of the absorption machine in the seasonal cooling demand. An economic valuation was accomplished based on the current cost of conventional cooling systems. It was established that the solar cooling system is economical only when shared with domestic water heating.  相似文献   

16.
A single-glass, flat-plate solar collector for air heating is analyzed for an optimum tilt angle of 45° for Shiraz (29° 36′ N latitude, 52° 32′ E longitude, and elevation of 4500 ft). The absorbed and utilized solar energy, as well as the collector outlet air temperature, the glazing, and the blackened plate temperatures, are determined with respect to the incident solar energy, parametric with collector inlet air temperatures and flow rates and outside air temperature.A 10 ft2 collector and an 8 ft3 rock storage are built to experimentally verify the analysis and obtain cost estimates. A 5000 ft2 single-story building is considered for solar heating and economic evaluations. Based on an annual interest rate of 8 per cent amortization of the solar heating equipment over 15 yr, electrical energy costs of 3c/kWh, and fuel costs of $1·10 per 106 B.t.u., the optimum collector area which results in minimum annual operating costs (of the solar heating system and the auxiliary heating unit) is determined. A net saving results because solar heating is employed. The feasibility study is extended to eleven other Iranian cities. It is found profitable to employ solar heating in cities with low annual rainfall and relatively cold winters. An effective evaporative cooling is obtained by spraying water over the rock storage during the summer.  相似文献   

17.
In this paper, the simulation of the performance of solar-assisted heating and cooling systems is analyzed. Three different plant layouts are considered: (i) the first one consists of evacuated solar collectors and a single-stage LiBr–H2O absorption chiller; here in order to integrate the system in case of insufficient solar radiation, an electric water-cooled chiller is activated; (ii) configuration of the secondly considered system is similar to the first one, but the absorption chiller and the solar collector area are sized for balancing about 30% of the building cooling load only; (iii) the layout of the thirdly considered system differs from the first one since the auxiliary electric chiller is replaced by a gas-fired heater. Such system configurations also include: circulation pumps, storage tanks, feedback controllers, mixers, diverters and on/off hysteresis controllers.  相似文献   

18.
In this study, parabolic trough collector with an integrated source of geothermal water is used with regenerative Rankine cycle with an open feedwater heater, an electrolyzer, and an absorption cooling system. The absorption fluids used in the solar collectors were Al2O3‐ and Fe2O3‐based nanofluids. Detailed energetic and exergetic analyses are done for the whole system including all the components. A comparative analysis of both the used working fluids is done and plotted against their different results. The parameters that are varied to change the output of the system are ambient temperature, solar irradiance, the percentage of nanofluids, the mass flow rate of the geothermal well, the temperature gradient of the geothermal well that had an effect on the net power produced, and the outlet temperature of the solar collector overall energetic and exergetic efficiencies. Other useful outputs by this domestic integrated multigeneration system are the heating of domestic water, space heating (maintaining the temperature at 40°C‐50°C), and desalination of seawater (flash distillation). The hydrogen production rate for both the fluids diverges with each other, both producing average from 0.00490 to 0.0567 g/s.  相似文献   

19.
In this paper, a transient simulation model of solar-assisted heating and cooling systems (SHC) is presented. A detailed case study is also discussed, in which three different configurations are considered. In all cases, the SHC system is based on the coupling of evacuated solar collectors with a single-stage LiBr-H2O absorption chiller, and a gas-fired boiler is also included for auxiliary heating, only during the winter season. In the first configuration, the cooling capacity of the absorption chiller and the solar collector area are designed on the basis of the maximum cooling load, and an electric chiller is used as the auxiliary cooling system. The second layout is similar to the first one, but, in this case, the absorption chiller and the solar collector area are sized in order to balance only a fraction of the maximum cooling load. Finally, in the third configuration, there is no electric chiller, and the auxiliary gas-fired boiler is also used in summer to feed the absorption chiller, in case of scarce solar irradiation.The simulation model was developed using the TRNSYS software, and included the analysis of the dynamic behaviour of the building in which the SHC systems were supposed to be installed. The building was simulated using a single-lumped capacitance model. An economic model was also developed, in order to assess the operating and capital costs of the systems under analysis. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented, in order to determine the set of the synthesis/design variables that maximize the energy efficiency of each configuration under analysis.The results of the case study were analyzed on monthly and weekly basis, paying special attention to the energy and monetary flows of the standard and optimized configurations. The results are encouraging as for the potential of energy saving. On the contrary, the SHC systems appear still far from the economic profitability: however, this is notoriously true for the great majority of renewable energy systems.  相似文献   

20.
The paper describes the project for a Zero Energy House constructed at the Technical University of Denmark. The house is designed and constructed in such a way that it can be heated all winter without any “artificial” energy supply, the main source being solar energy. With energy conservation arrangements, such as high-insulated constructions (30–40 cm mineral wool insulation), movable insulation of the windows and heat recovery in the ventilating system, the total heat requirement for space heating is calculated to 2300 kWh per year. For a typical, well insulated, one-storied, one-family house built in Denmark, the corresponding heat requirement is 20,000 kWh. The solar heating system is dimensioned to cover the heat requirements and the hot water supply for the Zero Energy House during the whole year on the basis of the weather data in the “Reference Year”. The solar heating system consists of a 42 m2 flat-plate solar collector, a 30 m3 water storage tank (insulated with 60 cm of mineral wool), and a heat distribution system. A total heat balance is set up for the system and solved for each day of the “Reference Year”. Collected and accumulated solar energy in the system is about 7300 kWh per yr; 30 per cent of the collected energy is used for space heating, 30 per cent for hot water supply, and 40 per cent is heat loss from the accumulator tank. For the operation of the solar heating system, the pumps and valves need a conventional electric energy supply of 230 kWh per year (corresponding to 5 per cent of the useful solar energy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号