首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
类金刚石(DLC)薄膜与不锈钢的结合强度是DLC薄膜应用于血管支架表面改性的关键技术问题.利用磁过滤阴极真空弧源沉积方法在316L不锈钢表面沉积DLC薄膜,研究沉积时基体偏压、薄膜厚度以及钛过渡层对DLC薄膜与基体结合强度的影响.研究结果表明,316L表面制备相同厚度的DLC薄膜,采用-1000V脉冲偏压制备的薄膜结合强度明显优于-80V直流偏压下制备的DLC薄膜;随着DLC薄膜厚度的增大,DLC薄膜与316L基体的结合力下降;316L不锈钢表面制备一层100nm的钛过渡层之后可以改善DLC薄膜的结合状况,并且经过20%的拉伸变形后,DLC薄膜完整,耐蚀性优于未表面处理的316L不锈钢.以上研究结果表明,磁过滤阴极真空弧源方法制备DLC薄膜与316L结合强度高,可以有效的提高316L的耐腐蚀性,是一种具有应用前景的血管支架表面改性方法.  相似文献   

2.
Cell attachment and spreading on Ti-based alloy surfaces is a major parameter in implant technology. Ti-39Nb-13Ta-4.6Zr alloy is a new β type Ti alloy developed for biomedical application. This alloy has low modulus and high strength, which indicates that it can be used for medical purposes such as surgical implants. To evaluate the biocompatibility and effects of the surface morphology of Ti-39Nb-13Ta-4.6Zr on the cellular behaviour, the adhesion and proliferation of rat gingival fibroblasts were studied with substrates having different surface roughness and the results were also compared with commercial pure titanium and Ti-6Al-4V. The results indicate that fibroblast shows similar adhesion and proliferation on the smooth surfaces of commercial pure titanium (Cp Ti), Ti-39Nb-13Ta-4.6Zr, and Ti-6Al-4V, suggesting that Ti-39Nb-13Ta-4.6Zr has similar biocompatibility to Cp Ti and Ti-6Al-4V. The fibroblast adhesion and spreading was lower on rough surfaces of Cp Ti, Ti-39Nb-13Ta-4.6Zr and Ti-6Al-4V than on smooth ones. Surface roughness appeared to be a dominant factor that determines the fibroblast adhesion and proliferation.  相似文献   

3.
Cell attachment and spreading on Ti-based alloy surfaces is a major parameter in implant technology. Ti39Nb-13Ta-4.6Zr alloy is a new β type Ti alloy developed for biomedical application. This alloy has low modulus and high strength, which indicates that it can be used for medical purposes such as surgical implants.To evaluate the biocompatibility and effects of the surface morphology of Ti-39Nb-13Ta-4.6Zr on the cellular behaviour, the adhesion and proliferation of rat gingival fibroblasts were studied with substrates having different surface roughness and the results were also compared with commercial pure titanium and Ti-6Al-4V. The results indicate that fibroblast shows similar adhesion and proliferation on the smooth surfaces of commercial pure titanium (Cp Ti), Ti-39Nb-13Ta-4.6Zr, and Ti-6Al-4V, suggesting that Ti-39Nb-13Ta-4.6Zr has similar biocompatibility to Cp Ti and Ti-6Al-4V. The fibroblast adhesion and spreading was lower on rough surfaces of Cp Ti, Ti-39Nb-13Ta-4.6Zr and Ti-6Al-4V than on smooth ones. Surface roughness appeared to be a dominant factor that determines the fibroblast adhesion and proliferation.  相似文献   

4.
Carbon nitride (CNX) films (with N/C ratio of 0.5) were deposited on both untreated and plasma nitrided Ti-6Al-4V substrates by D.C. magnetron sputtering using a graphite target in nitrogen plasma. TEM and XPS analysis revealed the formation of both amorphous CNX structure and crystalline -C3N4 phases in the deposited coatings. Nano-indentation tests showed that the film hardness was about 18.36 GPa. Both the scratch tests and indentation tests showed that compared with CNX film deposited directly on Ti-6Al-4V, the load bearing capacity of CNX film deposited on plasma nitrided Ti-6Al-4V was improved dramatically. Ball-on-disk wear tests under both dry sliding and lubricated conditions (with simulated body fluids) were performed to evaluate the friction and wear characteristics of the deposited coatings. Results showed that under both dry and lubricated conditions, the duplex treated system (i.e., with CNX film deposited on plasma nitrided Ti-6Al-4V substrate) was more effective in maintaining a favorable low and stable coefficient of friction and improving wear resistance than both individual plasma nitriding and CNX films on Ti-6Al-4V substrate. Under dry sliding conditions, the generated wear debris of spalled films were accumulated on the wear track, mechanically alloyed and graphitized, thus significantly reducing the coefficient of friction and preventing wear of the substrate. However, under lubricated conditions, due to the flowing of the fluids, the lubricating wear debris was taken away by the fluids, and therefore, the direct contact of two original surfaces resulted in high coefficient of friction and extensive abrasive wear of the substrate for CNX films deposited on Ti-6Al-4V substrate. Also when there was some small-area spallation of CNX films, the fluids could seep into the interface between the film and substrate, thus degrading the interfacial adhesion and resulting in a large area spallation.  相似文献   

5.
In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells.  相似文献   

6.
Diamond-like carbon (DLC) films have been deposited by RF plasma-assisted glow discharge CVD on AISI 304 stainless steel and Ti–6Al–4V substrates. A substrate plastic straining technique (to measure the strength and adhesion of the coating) and erosion testing (to measure its durability) have been used, before and after exposure to various fluids (distilled water, phosphate buffered saline solution (PBS) and bovine serum). The films on both substrates had excellent adhesion before exposure to the fluid, being slightly higher for those on Ti substrates. PBS solution affected the adhesion adversely, whereas distilled water and serum had no apparent effect. Fourier transform infrared (FTIR) and Raman spectroscopic studies revealed that there were no changes in the atomic structure of the coatings during exposure. X-ray photoelectron spectroscopy (XPS) measurements indicated that PBS tends to penetrate through perforations in the film and attack the thin transition layer of graded Si/C composition between the a: Si–H layer and the DLC coating. An increase in exposure temperature increased the population of defects in samples exposed to PBS. Coatings on Ti exhibited similar characteristics, but were considerably more resistant to damage. This may be due to a lower incidence of defects and perforations in these films.  相似文献   

7.
Diamond coating on Ti-6Al-4V alloy was carried out using microwave plasma enhanced CVD with a super high CH4 concentration, and at a moderate deposition temperature close to 500 °C. The nucleation, growth, adhesion behaviors of the diamond coating and the interfacial structures were investigated using Raman, XRD, SEM/TEM, synchrotron radiation and indentation test. Nanocrystalline diamond coatings have been produced and the nucleation density, nucleation rate and adhesion strength of diamond coatings on Ti alloy substrate are significantly enhanced. An intermediate layer of TiC is formed between the diamond coating and the alloy substrate, while diamond coating debonding occurs both at the diamond-TiC interface and TiC-substrate interface. The simultaneous hydrogenation and carburization also cause complex micro-structural and microhardness changes on the alloy substrates. The low deposition temperature and extremely high methane concentration demonstrate beneficial to enhance coating adhesion strength and reduce substrate damage.  相似文献   

8.
Nanocomposite films consisting of diamond nanoparticles of 3-5 nm diameter embedded in an amorphous carbon matrix have been deposited by means of microwave plasma chemical vapour deposition (MWCVD) from CH4/N2 gas mixtures. Si wafers, Si coated with TiN, polycrystalline diamond (PCD) and cubic boron nitride films, and Ti-6Al-4V alloy have been used as substrates. Some of the substrates have been pretreated ultrasonically with diamond powder in order to enhance the nucleation density nnuc. It turned out that nnuc depends critically on the chemical nature of the substrate, its smoothness and the pretreatment applied. No differences to the nucleation behaviour of CVD PCD films were observed. On the other hand, the growth process seems to be not affected by the substrate material. The crystallinity (studied by X-ray diffraction) and the bonding environment (investigated by Raman spectroscopy) show no significant differences for the various substrates. The mechanical and tribological properties, finally, reflect again the influence of the substrate material: on TiN, a lower hardness was measured as compared to Si, PCD and c-BN, whereas the adhesion of c-BN/nanocrystalline diamond (NCD) system was determined by that of the c-BN film on the underlying Si substrate.  相似文献   

9.
脉冲真空电弧离子镀在不锈钢上沉积类金刚石薄膜的研究   总被引:2,自引:1,他引:2  
周顺  严一心 《真空》2005,42(4):15-18
利用脉冲真空电弧离子镀技术在3Cr13不锈钢上制备了类金刚石(DLC)薄膜,通过Raman光谱分析了膜的结构特征,采用摩擦磨损试验机测试了薄膜在不同载荷下的摩擦系数,运用划痕仪研究了膜基的结合强度.结果表明:所镀制的薄膜具有典型类金刚石结构特征,膜中ID/IG为1.33;摩擦系数随着载荷的增大而减小,载荷为5 N,转速120 r/min时的摩擦系数为0.12;Ti过渡层的引入显著地提高了膜基结合力.  相似文献   

10.
Both Ti-6Al-4V and 304 stainless steels (304SS) are good engineering alloys and widely used in industry due to their excellent mechanical properties as well as corrosion resistance. Well-developed joining process can not only promote the application of these alloys, but also can provide designers versatile choices of alloys. Brazing is one of the most popular methods in joining dissimilar alloys. In this study, three-selected silver base filler alloys, including Braze 580, BAg-8 and Ticusil®, are used in vacuum brazing of 304SS and Ti-6Al-4V. Based upon dynamic sessile drop test, Braze 580 has the lowest brazing temperature of 840°C, in contrast to 870°C for BAg-8 and 900°C for Ticusil® braze alloy. No phase separation is observed for all brazes on 304SS substrate. However, phase separation is observed for all specimens brazed above 860°C on Ti-6Al-4V substrate. The continuous reaction layer between Braze 580 and 304SS is mainly comprised of Ti, Fe and Cu. The thickness of reaction layer at Braze 580/Ti-6Al-4V interface is much larger than that at Braze 580/304SS interface. Meanwhile, a continuous Cu-Sn-Ti ternary intermetallic compound is found at the Braze 580/Ti-6Al-4V interface. Both Ticusil® and BAg-8 brazed joint have similar interfacial microstructures. Different from the Braze 580 specimen, there is a thick Cu-Ti-Fe reaction layer in both BAg-8/304SS and Ticusil®/304SS interfaces. The formation of Cu-Ti-Fe interfacial layer can prohibit wetting of BAg-8 and Ticusil® molten brazes on 304SS substrate. Meanwhile, continuous Ti2Cu and TiCu layers are observed in Ti-6Al-4V/BAg-8 and Ti-6Al-4V/Ticusil® interfaces.  相似文献   

11.
Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4 V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4 V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4 V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4 V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4 V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4 V alloy as the material base for mini-implants.  相似文献   

12.
The adhesion improvement of biocompatible thin films on medical metal alloy substrates commonly used for joint replacement implants is studied. Diamond-like carbon (DLC) and carbon nitride (CN) thin films are, because of their unique properties such as high hardness, wear resistance and low friction coefficient, candidates for coating of medical implants. However, poor adhesion on substrates with high thermal expansion coefficient limits their application. We deposited CN films by pulsed DC discharge vacuum sputtering of graphite target on CoCrMo and Ti6Al4V substrates. Surface nitridation of the substrate, changing the deposition parameters and use of interlayer led to improved adhesion properties of the films. Argon and nitrogen gas flow, thickness of the film and frequency of the deposition pulses had significant influence on the adhesion to the substrate. Properties of deposited films were analyzed using Scanning Electron Microscopy, Raman spectroscopy and tribology tests.  相似文献   

13.
Ti-based biocompatible alloys are especially used for replacing failed hard tissue. Some of the most actively investigated materials for medical implants are the beta-Ti alloys, as they have a low elastic modulus (to inhibit bone resorption). They are alloyed with elements such as Nb, Ta, Zr, Mo, and Fe. We have prepared a new beta-Ti alloy that combines Ti with the non-toxic elements Ta and Mo using a vacuum arc-melting furnace and then annealed at 950 degrees C for one hour. The alloy was finally quenched in water at room temperature. The Ti-12Mo-5Ta alloy was characterised by X-ray diffraction, optical microscopy, SEM and EDS and found to have a body-centred-cubic structure (beta-type). It had a lower Young's modulus (about 74 GPa) than the classical alpha/beta Ti-6Al-4V alloy (120 GPa), while its Vickers hardness remained very high (about 303 HV). This makes it a good compromise for a use as a bone substitute. The cytocompatibility of samples of Ti-12Mo-5Ta and Ti-6Al-4V titanium alloys with various surface roughnesses was assessed in vitro using organotypic cultures of bone tissue and quantitative analyses of cell migration, proliferation and adhesion. Mechanically polished surfaces were prepared to produce unorientated residual polished grooves and cells grew to a particularly high density on the smoother Ti-12Mo-5Ta surface tested.  相似文献   

14.
Crack propagation testing has been applied to synthetic metal matrix composites (MMC) in order to compare failure mechanisms in Ti-6Al-4V alloy reinforced by uncoated boron, B(B4C) and chemical vapour deposition (CVD) SiC filaments. The impeding effect of the fibres leads to low crack growth rates, compared to those reported for the unreinforced Ti-6Al-4V alloy and to higher toughness despite the presence of the reinforcing brittle phases. After long isothermal exposures at 850° C, the MMC crack growth resistance is reduced mainly due to fibre degradation, fibre-matrix debonding and an increase in matrix brittleness. However, for short-time isothermal exposures (up to about 10 h for B/Ti-6Al-4V, 30 h for B (B4C)/Ti-6Al-4V and 60 h for SiC/Ti-6Al-4V) the crack growth resistance is significantly increased. This improvement is related to the build up of an energy-dissipating mechanism by fibre microcracking in the vicinity of the crack tip. This damaging mechanism allowing matrix plastic deformation is already effective for boron and B(B4C) in the as-fabricated state, but occurs only after 10 h of thermal exposure at 850° C in the case of SiC/Ti-6Al-4V composites.  相似文献   

15.
We report the formation of a very smooth, continuous and homogeneous diamond-like carbon DLC thin coating over a bare stainless steel surface without the need for a thin Si/Cr/Ni/Mo/W/TiN/TiC interfacial layer. As confirmed by the field-emission scanning electron microscopy, good adhesion is achieved as characterized by (i) the formation of a smooth, continuous film with no pores, (ii) a significant reduction of oxygen in the interfacial layer, and (iii) the development of rich carbon content at the top surface. Thickness measurements by cross-sectional secondary-emission microscopy showed that the DLC coating is essentially a 2-dimensional material.  相似文献   

16.
Electro-discharge-compaction (EDC) is a unique method for producing porous-surfaced metallic implants. The objective of the present studies was to examine the surface characteristics of the Ti-6Al-4V implants formed by EDC. Porous-surfaced Ti-6Al-4V implants were produced by employing EDC using 480 F capacitance and 1.5 kJ input energy. X-ray photoelectron spectroscopy was used to study the surface characteristics of the implant materials. C, O, and Ti were the main constituents, with smaller amounts of Al and V. EDC Ti-6Al-4V also contained N. Titanium was present mainly in the forms of mixed oxides and small amounts of nitride and carbide were observed. Al was present in the form of aluminum oxide, while V in the implant surface did not contribute to the formation of the surface oxide film. The surface of conventionally prepared Ti-6Al-4V primarily consists of TiO2, whereas, the surface of the EDC-fabricated Ti-6Al-4V consists of complex Ti and Al oxides as well as small amounts of titanium carbide and nitride components. However, preliminary studies indicated that the implant was biocompatible and supports rapid osseointegration.  相似文献   

17.
Hard titanium nitride (TiN) coatings were obtained on the surface of Ti-6Al-4V alloy using an original PIRAC nitriding method, based on annealing the samples under a low pressure of monatomic nitrogen created by selective diffusion of N from the atmosphere. PIRAC nitrided samples exhibited excellent corrosion resistance in Ringer's solution in both potentiodynamic and potentiostatic tests. The anodic current and metal ion release rate of PIRAC nitrided Ti-6Al-4V at the typical corrosion potential values were significantly lower than those of the untreated alloy. This, together with the excellent adhesion and high wear resistance of the TiN coatings, makes PIRAC nitriding an attractive surface treatment for Ti-6Al-4V alloy surgical implants.  相似文献   

18.
以SiC陶瓷靶为靶材,Ar和CHF_3为源气体,采用反应磁控溅射法在双面抛光的316L不锈钢基片上制备出了系列Si和F共掺杂的DLC∶F∶Si薄膜。研究了射频输入功率对薄膜的附着力、硬度和表面接触角的影响。结果表明,选取适当的输入功率(180W左右)可以制备出附着力达11N的DLC∶F∶Si薄膜。通过拉曼和红外光谱分析以及样品粗糙度分析,作者提出了输入功率对DLC∶F∶Si薄膜结构和特性调制的机理,即输入功率直接影响SiC靶的溅射产额、空间Ar~+的能量以及CHF_3的分解程度,继而影响空间Si、C、-CF、-CF_2,特别是F~*等基团的能量和浓度,调制薄膜中F含量以及Si-C键含量和C网络的关联度。Si-C、C=C键的增加有助于薄膜附着力的明显改善,F含量的减少则会导致薄膜的疏水性能有所下降。  相似文献   

19.
A comparison of the superplastic deformation behaviour of Ti-6Al-4V (wt%) between 760 and 940‡ C and Ti-6Al-2Sn-4Zr-2Mo between 820 and 970‡ C has been carried out on sheet materials possessing similar as-received microstructures. High tensile elongations were obtained with maximum values being recorded at 880‡ C for Ti-6Al-4V (Ti-6/4) and at 940‡ C for Ti-6Al-2Sn-4Zr-2Mo (Ti-6/2/4/2), under which conditions both alloys possessed aΒ phase proportion of approximately 0.40. For a given deformation temperature the Ti-6/4 alloy had a slightly lower flow stress than the Ti-6/2/4/2, and this was attributed to the lowerΒ phase proportion in the latter alloy. However, at the respective optimum deformation temperatures the Ti-6/2/4/2 alloy had the lower flow stress. The results show that suitably processed Ti-6/2/4/2 alloy is capable of withstanding substantial superplastic strains at relatively low flow stresses, although the optimum deformation temperature is higher for this alloy than for Ti-6/4 material possessing a similar microstructure.  相似文献   

20.
DLC films were deposited on polished both n-type and p-type silicon substrates. The silicon resistivity was ~0.02 Θ cm. Some of the DLC films 20 nm thick were deposited on the n-type Si surface with the submicron cones. SEM and Raman spectroscopy were used for structural investigations. Field electron emission occurs after dielectric breakdown, except for the samples with Si cones for which the emission seems to originate from SiC formed during the first stage of electron emission. It seems that too much sp2 graphite phase may give rise to the observed increase in the turn-on field from 50 V/μm up to 150 V/μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号