首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
以Li Ni0.5Co0.2Mn0.3O2和Li Mn0.7Fe0.3PO4混合材料为正极活性物质、人造石墨为负极活性物质,制备锂离子电池。两种正极材料均为球形,粒径分布相近,D50分别为7.93μm和7.21μm。差示扫描量热测试结果表明:混合正极的热分解温度较高(263℃)且放热量小。分别以Li Ni0.5Co0.2Mn0.3O2、Li Mn0.7Fe0.3PO4和两者质量比为78∶22的混合材料制备电池,以1 C在3.0~4.2 V充放电,循环300次的容量保持率分别为92.8%、97.0%和97.6%。混合正极电池2 C倍率放电容量保持率为94.0%,在针刺和过充等测试过程中不起火、不爆炸。  相似文献   

2.
高倍率LiMn_2O_4锂离子电池的制作与性能   总被引:1,自引:0,他引:1  
采用商品化的LiMn2O4和石墨作为正极材料制作锰酸锂动力电池,并利用XRD、SEM等分析手段表征了LiMn2O4原料。研究了不同面密度和导电剂含量对锰酸锂电池倍率性能的影响。研究发现,锰酸锂电池的倍率性能随着面密度的减小而改善,随着导电剂含量的增加先改善后变差。当正极面密度未2.5 g/dm2,导电剂含量为3%时电池的倍率性能最好。20 C放电容量为1 C的94.1%,1C充电5 C放电,100次循环后容量保持率为92%。  相似文献   

3.
采用D50为10μm的中间相碳微球(MCMB)、D50为10μm的层状石墨和D50为15μm的层状石墨制备实验电池,并研究了电池的性能。在2.5~3.7 V循环,MCMB、D50为10μm的层状石墨和D50为15μm的层状石墨制备的电池的5.0 C放电容量保持率分别为95.6%、94.2%和91.3%;1.0 C充电、3.0 C放电、100%放电深度(DOD)循环1 600次的容量保持率分别为85.6%、84.4%和80.4%。同等粒径下,球形的MCMB相对于层状石墨有较好的倍率及循环性能;相同形貌下,粒径较小的石墨具有较好的倍率及循环性能。  相似文献   

4.
将科琴黑(KB)、碳纳米管(CNT)、导电石墨KS-6等3种导电剂分别与导电炭黑SP混合,组成锂离子电池用双组分导电剂。以KB+SP、CNT+SP和KS-6+SP为导电剂的电池以1.0 C在3.0~4.2 V循环400次,容量保持率分别为94.15%、93.07%和92.30%;以KB+SP作为导电剂的电池,内阻最低(28.2 mΩ),化成容量最高(1 756.8 m Ah),-40℃低温下以0.5 C放电到2.5 V时,输出容量为1.31 Ah,达到常温容量的80%以上;以5.0 C高倍率放电(3.0~4.2 V)时,电压平台最高(3.32 V),输出容量最大(1 458.3 m Ah)。  相似文献   

5.
研究了不同粒径磷酸铁锂在25 ~-20℃温度范围内的放电性能,并利用交流阻抗分析了电池阻抗随温度的变化.结果表明,随着温度的降低,锂离子电池的放电性能显著降低.粒径小的磷酸铁锂材料具有较高的放电容量、放电平台.电化学阻抗图谱(EIS)显示,在25 ~0℃温度范围内,溶液电阻(Rsoi)和SEI膜电阻(Rsei)变化不大,对电池低温性能的影响较小;而电荷传递电阻(Rct)随着温度的降低而显著增加;在相同的温度下,粒径小的磷酸铁锂Rct较小.随着温度的降低至0℃,粒径大的磷酸铁锂,Rct随温度的变化较大.  相似文献   

6.
张仕玉  王传宝  王美玲  周飞 《电源技术》2012,36(8):1225-1231
橄榄石型LiFePO4具有优异的热稳定性能、循环性能、环境优良等特点,是最具潜力的锂离子电池正极材料之一。但是,其低电子电导率(10-9S/cm)和较差的离子扩散速率(10-11S/cm)严重影响了低温性能和高倍率充放电性能。此外,较低的理论密度(3.6 g/cm3)也严重影响了其能量密度的提高。从LiFePO4正极材料的倍率性能、低温性能及能量密度角度出发,重点讨论了形貌控制、包覆导电性材料、金属离子掺杂等改性方式对LiFePO4电化学性能和能量密度的影响。揭示了目前LiFePO4正极材料的研究现状和亟待解决的问题,并对今后的发展方向进行了评述。  相似文献   

7.
贺兴  林波  缪文泉  韩广帅 《电池》2021,51(2):152-156
选择起火事故大巴车上残存的20只32650型磷酸铁锂动力锂离子电池,用内阻测试仪测试内阻、电压,用充放电设备分析容量,用绝热加速量热(ARC)进行绝热热失控分析,用差示扫描量热(DSC)分析电极和电解液的热稳定性,用SEM研究负极表面和正极截面的形貌与组成,用X射线光电子能谱(XPS)研究负极表面组成和固体电解质相界面...  相似文献   

8.
锂离子电池的低温性能是制约锂离子电池发展的重要因素之一。研究了负极中掺杂20%软碳的电池样品在低温条件下的倍率充电性能、低温放电性能及低温循环性能。实验结果表明,负极掺杂20%软碳的锂离子电池,-10、-20℃充电容量分别能达到25℃时充电容量的91.11%和81.74%;-20℃循环50次,剩余容量为低温初始容量的91.91%。  相似文献   

9.
锂离子电池在-40℃以下使用时能量和功率迅速下降,主要是由于电解质电导率下降、锂离子在固体电解质界面(SEI)膜上动力学性能差,以及锂离子在电极表面层和电极本体的扩散差[1]。主要从锂离子电池的材料角度出发,重点研究了正负极活性物质粒径、电解液对磷酸铁锂电池低温性能的影响。结果表明正负极活性物质粒径越小,锂离子电池低温性能越好,间接证明了锂离子在电极表面层和电极本体的扩散是影响锂离子电池低温性能最主要的原因,尤其是锂离子在正极上的扩散对低温放电性能起主导性作用。  相似文献   

10.
LiFePO_4锂离子电池的低温性能   总被引:1,自引:1,他引:1  
采用循环伏安和充放电测试研究了LiFePO4和碳负极材料的低温性能.LiFePO4在25℃时的0.1 C和0.3 C放电比容量分别为156 mAh/g和148 mAh/g,在-20℃时分别为91 mAh/g和65 mAh/g.碳负极材料在-20℃下以0.1 C和0.3 C放电,几乎可放出25℃时的全部比容量.约330 mAh/g.LiFePO4是LiFePO4锂离子电池低温容量的主要影响因素.  相似文献   

11.
胡勤琴  周震涛 《电池》2007,37(1):38-40
采用高温固相法,制备了锂离子电池用的纯LiMno0.6Fe0.4PO4和LiMn0.6Fe0.4PO4/C复合正极材料.利用酸溶解法、XRD、扫描电镜及充放电测试等,对样品的碳含量、晶体结构、形貌以及电性能等进行了研究.所得LiMn0.6Fe0.4PO4和LiMn0.6Fe0.4P04/C均为纯橄榄石型晶体结构,其中以蔗糖为碳添加剂的LiMn0.6Fe0.4PO4/C复合材料具有良好的循环性能和高倍率性能:以0.1C充放电,首次放电比容量为122.3 mAh/g,循环15次之后,容量保持率为99.3%;以0.5 C和1.5 C充放电,首次放电比容量分别为121.4 mAh/g和110.2 mAh/g.  相似文献   

12.
张莉莉  汝坤林 《电池》2008,38(2):130-131
采用火焰原子吸收分光光度法测定锂离子电池正极材料LiMn2O4中杂质Fe的含量.考虑盐酸浓度、基体及干扰离子对测定Fe产生的影响,通过控制酸的浓度和在标准溶液中加入定量基体来消除测定误差.本方法的准确度高,回收率为95.7%~102.5%,相对标准偏差(RSD)小于5.3%.  相似文献   

13.
刘云建  沈湘黔 《电池工业》2010,15(5):284-288
采用商品化的LMnO4和石墨作为正负极材料制作锰酸锂动力电池(347080-16Ah),并对其进行热冲击、穿刺、短路和过充安全等试验。试验结果显示,电池经过热冲击、穿刺和短路测试后,未发生爆炸、起火现象;但是3C/10V过充后,电池发生爆炸,并放出大量黑烟,电池表面最高温度达到290℃;黑烟的主要成分是CO2、CO、H2、CH4、C2H6、C2H4和炭黑,爆炸后的粉末主要成分为C、MnO和Li2CO3。  相似文献   

14.
采用水热法一步合成了Co0.7Fe0.3/CoFe2O4纳米复合材料。利用粉末X射线衍射(XRD)、透射电子显微镜(TEM)观察了纳米复合材料的结构及形貌。室温穆斯堡尔谱(MS)明显地由对应于尖晶石型钴铁氧体(CoFe2O4)和体心立方钴铁合金(Co0.7Fe0.3)的两组六线谱叠加而成。在室温下,利用振动样品磁强计(VSM)测量材料的磁滞回线,表明Co0.7Fe0.3/CoFe2O4纳米复合材料具有较高的比饱和磁化强度(Ms=84.82A·m2/kg)和矫顽力(μ0Hc=0.15T)。  相似文献   

15.
Pechini预燃烧法合成锂离子蓄电池正极材料LiMn2O4   总被引:5,自引:0,他引:5  
徐宁  刘国强  曾潮流  吴维 《电源技术》2002,26(6):431-433
采用Pechini法合成锂离子蓄电池正极材料LiMn2 O4,将生成的聚合物前驱体在开放的空气中点燃 ,燃烧后的粉料在 60 0~ 90 0℃中焙烧 6h得到最终产物。研究了nLi/nMn摩尔比例 (R)以及合成温度对合成产物组成结构和电化学性能的影响。结果表明在 80 0℃焙烧 6h所得试样的初始容量和循环性能最好 ;当R =1.0 0 /2时 ,试样初始容量最高 (充电容量 13 8mAh/g ,放电容量 12 6mAh/g) ;R =1.10 /2时 ,试样的循环性能最好 (2 0次保持 94.7% )。  相似文献   

16.
在电解液中的溶解是尖晶石LiMn2O4高温不可逆容量损失的主要原因。聚合物锂离子蓄电池结构特点及聚合物材料与电解液相互作用可以影响高温下尖晶石LiMn2O4在电解液中的溶解及扩散行为,降低尖晶石LiMn2O4的不可逆容量损失。使用尖晶石LiMn2O4为正极活性材料,利用厦门大学宝龙电池研究所聚合物锂离子蓄电池中试生产线,在特定的工艺条件下制备容量为600mAh的实验电池。实验表明,在聚合物锂离子蓄电池中LiMn2O4材料高温稳定性明显改善,实验电池在常温下循环200次,容量保持率在80%以上;55℃下循环30次,容量保持率超过92%;70℃下循环10次,容量保持率达到96%。  相似文献   

17.
杜晓莉  邓爽  王宏伟 《电池工业》2012,17(3):147-149
研究了锰酸锂动力锂离子电池在不同温度下(-20℃和65℃)的充放电性能.结果表明:当温度降到-20℃时,锂离子电池的恒流充电容量仅为充电总容量的6.2%,恒压充电时间延长;相应的放电电压平台也降低.当温度高于65℃时,电池的充电容量仅为常温充电容量的20.8%,充电过程迅速结束,放电性能显著降低.  相似文献   

18.
用质量比为1∶1的锰酸锂和包埋镍酸锂混合正极材料,组装成AA型锂离子蓄电池。在4.20~2.75 V、1 C充放电电流和55 ℃条件下进行充放电循环,结果发现该混合材料组装的电池在高温下循环不仅表现出较高的充放电容量,而且循环稳定性较锰酸锂材料为正极的电池有很大的提高。同时,通过对比该混合正极材料与钴酸锂和包埋镍酸锂正极材料组装的AA型电池的热稳定性和耐过充性,发现该混合材料组装的电池不仅能耐145 ℃的高温,而且在3 C、10 V,5 C、10 V,3 C、15 V,5 C、15 V,3 C、20 V条件下过充均是安全的,较钴酸锂和包埋镍酸锂电池的热稳定性和耐过充性有很大的提高。这一混合正极材料资源丰富、价格较低、高温和安全性能优良,是锂离子动力电池的优选正极材料。  相似文献   

19.
研究了对前躯体MnO2(EMD)进行不处理、去离子水处理和LiOH处理对合成LiMn2O4正极材料的性能影响。测试结果表明,LiOH处理得到的MnO2杂质含量少,结构稳定,制备的LiMn2O4X射线衍射峰增强,结晶性变好。LiOH处理MnO2制备的LiMn2O4的电化学性能优于去离子水处理MnO2制备的LiMn2O4和不处理MnO2制备的LiMn2O4。LiOH处理、去离子水处理及不处理MnO2制备的LiMn2O4在0.5C的放电比容量分别为115.56mAh/g、109.98mAh/g和100.67mAh/g;1C充放电90次循环下所对应的容量保持率分别为86.79%、86.56%、57.30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号