首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
应用HS改进原子分解的电能质量扰动辨识分析   总被引:1,自引:0,他引:1  
结合原子分解与和声搜索算法,提出了一种电能质量扰动信号自适应分解及特征参数辨识方法。针对Gabor原子分解匹配追踪算法计算量大、实时性差的问题,首先利用傅里叶变换进行频谱分析,估计出扰动信号频率、幅值等参数,并以估计值作为搜索的初始解,加快算法的收敛速度;然后根据电能质量扰动信号特点将Gabor原子库分解为类基波库、脉冲库、谐波库、振荡库4个子库,依次搜索各子库,降低搜索的复杂度;再次,利用和声搜索算法快速、准确的全局搜索和协同搜索的特点对匹配追踪算法进行改进,加快了搜索速度;最后,依据获得Gabor原子索引参数实现电能质量扰动信号参数辨识。算例仿真表明,所提方法在保留匹配追踪算法优良重构性能的前提下,计算复杂度显著降低,搜索效率和收敛速度加快,扰动参数辨识精度得到提高。  相似文献   

2.
针对电能质量中的复合扰动信号分析问题,提出一种粒子群优化(PSO)和匹配追踪(MP)算法相结合的分层搜索的原子分解方法。首先应用MP算法提取基波分量,对于去除基波分量的残差信号,利用快速傅里叶变换找寻能量最大的频率成分,采用PSO算法粗搜索出最佳匹配粒子,然后以最佳匹配粒子为中心,在一定范围内重新离散化,生成小规模原子库,再应用MP算法有针对性地进行细搜索,最终得到最佳匹配原子,提取出电能质量复合扰动特征参数。仿真结果表明,该方法能克服MP算法匹配时间长、计算量大及PSO优化MP算法残差积累过大、容易陷入局部最优、匹配参数不准确等缺点,且具有一定的抗噪性和实时性。  相似文献   

3.
提出一种原子分解的快速算法,并应用于电能质量扰动信号的分析中。该方法构建相关原子库,并将原子离散的参数连续化,能减少重构信号所需的原子数并使分解结果更准确;针对频率范围较大的谐波、衰减振荡等信号,采用快速傅里叶变换对最优原子频率进行预求解,从而降低原子库规模;采用粒子群优化的匹配追踪算法选出反映电能质量扰动信号特征的最优原子。仿真算例表明,该方法可快速准确地提取电能质量信号的扰动特征,且有较好的抗噪性能。  相似文献   

4.
采用原子分解能够准确提取电能质量扰动信号的幅值、频率、相位以及扰动起止时刻等特征量。但在原子分解过程中需要作大量的计算,计算速度缓慢。针对这一问题,根据信号的特点采用快速原子分解方法将Gabor原子库分为5层,简化每一层的索引参数。首先利用快速傅里叶变换测出信号的主要频率点和通过小波变换粗提取扰动起止采样点序列,然后将信号依次通过Gabor原子库每一层,从每一层中搜索到对应的最佳匹配原子,并采用伪牛顿法对最佳匹配原子进行优化,最后转化为衰减正弦量原子,以残余正弦信号的能量作为判断终止条件。算例仿真结果表明,该方法能够准确对电能质量参数进行辨识,并且运算速度有较大提高,验证了所提方法的有效性和实时性。  相似文献   

5.
针对电能质量暂态扰动信号时频局部化信息量较广难以简洁灵活提取有效细微特征以及匹配追踪算法计算量大的问题,提出一种应用于电能质量扰动特征参量提取及压缩重构的匹配时频原子框架及其遗传优化改进算法。在Gabor过完备时频原子库离散基础上,采用匹配追踪方法(matching pursuit,MP)对扰动信号进行时频原子自适应分解,并通过遗传算法(genetic algorithm,GA)对时频原子参量进行优化计算,从而降低匹配追踪搜索过程的复杂度,获得最佳匹配电能质量扰动信号特征的时频原子参量化解析表示以及匹配特征重压缩构波形。算例仿真表明,该框架重构信噪比高达50 dB,均方误差数量级为0.001,能量恢复系数达到0.99以上,与小波(包)相比,具有更优良的压缩重构性能及多分辨能力,遗传优化时频参量的改进算法,基本保持了 MP 优良的压缩重构性能,计算复杂度缩减率为95.8%,算法收敛性得到提高,匹配扰动信号计算效率提高80~100倍,满足电能质量扰动分析要求。  相似文献   

6.
电能质量数据压缩是电能质量问题检测和识别中的重要步骤,其本质即为探寻电能质量稀疏特征的过程。针对稀疏分解中常用的匹配追踪算法在匹配最佳原子时计算复杂度高、耗时长,不能满足电力信号分析实时性要求的问题,应用收敛精度高、收敛速度快以及全局寻优能力强的闪电搜索算法搜索最佳原子,提出了闪电搜索匹配追踪算法。利用所提算法在构建的电能质量相关原子库中对电能质量信号进行原子分解,提取电能质量特征参数,将提取到的参数作为压缩后的电能质量数据,实现电能质量数据压缩。实验结果表明,所提算法匹配最佳原子的耗时约缩短为原算法的1/98,基于所提算法的电能质量数据压缩方法在匹配最佳原子满足电力信号分析的实时性要求,具有较高的压缩率和较低的重构误差,提高了数据压缩的性能。  相似文献   

7.
应用原子分解的电能质量扰动信号特征提取方法   总被引:3,自引:1,他引:2  
提出一种应用原子分解实现的电能质量扰动信号特征提取方法.该方法以Gabor原子库和匹配追踪算法为基础,从扰动信号中迭代求取Gabor原子成分,再将Gabor原子转化为衰减正弦量原子,获得电能质量信号中各种扰动成分参量化的原子解析表示.用初始残余能量的阈值作为原子分解迭代终止条件,以改善特征提取效果.该方法可准确定量地提取各扰动成分的起止时刻、幅值、频率和变化规律等扰动特征,适用于暂态扰动、稳态扰动和多重扰动.算例分析验证了所提出的方法的有效性.  相似文献   

8.
匹配追踪算法能够自适应地从构造的完备原子库中建立信号的稀疏解析表示。提出一种基于MP(Matching Pursuit)算法的原子稀疏分解的电能质量扰动数据压缩方法,根据电能质量扰动信号的特点建立原子库,采用衰减正弦量原子对信号进行稀疏分解,提取扰动信号成分。仿真算例验证了所提出的数据压缩方法具有压缩比高的优点。  相似文献   

9.
时频原子分解对电能质量扰动信号具有良好的分析效果,但其常用的匹配追踪(MP)算法,存在计算量大、参数空间离散化影响原子匹配性能等不足。基于差分进化,研究了电能质量扰动信号原子分解的进化匹配追踪(EMP)算法,给出了算法流程。针对几种电能质量扰动信号,通过Gabor和衰减正弦量原子分解的30次独立仿真实验,分析了信号长度、噪声等对性能的影响。结果表明,EMP算法与MP相比大大减少了计算耗时且不受信号长度的影响,进一步提高了原子的全局匹配能力,具有很好的抗噪声能力。最后,给出了下一步工作的展望。  相似文献   

10.
针对电能质量扰动信号时频局部化信息量较广难以简洁、灵活提取有效细微特征以及匹配追踪收敛速度较差的问题,提出一种应用于电能质量扰动分解重构及扰动特征参量提取的匹配时频原子框架及其改进方法。在Gabor时频原子库离散优化基础上,通过匹配追踪算法对扰动信号进行自适应分解,同时对搜寻的最佳时频原子进行正交变换,减小冗余分量,设定迭代次数或残差阈值作为终止条件,从而获得一系列匹配扰动信号波形特征的正交时频原子及其参量化形式。仿真结果表明,该框架能有效分解提取电能质量扰动信号时频特征参量,相对基于匹配追踪的稀疏分解,改进算法单一扰动匹配特征重构信噪比高达55dB,多重扰动达35dB,均方误差数量级为0.001,匹配扰动特征精度及收敛性能进一步提高,满足电能质量分析要求。  相似文献   

11.
针对传统电能质量扰动分类模型中扰动特征复杂、识别步骤繁琐的问题,提出了一种通过模拟退火(SA)算法与粒子群优化(PSO)算法相结合来优化卷积神经网络(CNN)的电能质量扰动分类模型。将CNN卷积层中的二维卷积核替换成一维卷积核;采用SA算法对PSO算法进行改进,规避PSO算法陷入局部最优的困境;采用改进后的PSO算法对CNN进行参数寻优;利用优化CNN提取和筛选合适的特征,根据这些特征利用分类器得到最终分类结果。通过算例分析得出,使用基于SA-PSO算法优化的CNN的电能质量扰动分类模型能精确地识别出电能质量扰动信号。  相似文献   

12.
针对存在多种单一电能质量扰动的复合扰动分类识别问题,提出了一种基于分段改进S变换和RBF神经网络相结合的复合电能质量扰动识别新方法。首先对离散S变换进行了分段改进,将时域分辨率和频域分辨率进行分段处理,通过分析改进S变换得到的模时频矩阵,绘制了能够反映扰动信号不同突变参数的特性曲线。其次利用统计方法优化计算提取了10种用于模式识别的特征量,并用局部逼近的RBF神经网络设计了分类器对提取的特征样本进行训练和分类,最后在不同噪声环境下对5种单一扰动及谐波+电压暂降、电压暂降+闪变等6类复合电能质量扰动的分类识别进行了仿真验证。仿真结果表明,该方案时频处理、分类能力和学习速度等方面均优于普通改进S变换+全局逼近网络的方法,且鲁棒性强,能准确识别多种单一扰动及两种扰动同时存在的复合电能质量扰动。  相似文献   

13.
基于小波变换和改进Prony方法的电能质量扰动分析   总被引:5,自引:3,他引:2       下载免费PDF全文
传统的电能质量分析方法通常只针对某一类特定的电能质量扰动问题进行分析,为了实现对常见电能扰动信号进行有效的区分与辨识,提出小波分析与Prony方法相结合的分析算法。首先引入小波多分辨分析(multi-resolution analysis),选取合适的小波函数对扰动信号进行分解,判断分解信号是否存在模极大值点,从而区分出稳态与暂态电能质量扰动问题。对于暂态扰动问题,优化了Mallat重构层数,提取出暂态扰动波形,以实现对扰动类型的判断。对于稳态扰动问题,改进Prony方法对于系统阶数估计的过程,提高了参数辨识精度。最后对混合扰动信号进行分析,并使用Matlab进行了仿真和实验验证。仿真和实验结果表明,该算法能准确地识别出各种类型的电能质量扰动信号。  相似文献   

14.
为了更加快速准确识别感应电机转子断条故障,文中提出一种基于定子电流Hilbert模量与混沌粒子群算法(Chaos Particle Swarm Optimization,CPSO)优化BP神经网络的感应电机转子断条故障诊断方法。该方法首先通过定子电流Hilbert模量进行故障特征提取,然后采用CPSO-BP神经网络进行故障状态的自动识别。Hilbert模量可以将定子电流中的基波信号转化为直流分量,降低其对特征提取的干扰,从而凸显故障特征。而CPSO-BP神经网络方法相比BP神经网络具有更好的权值系数,可以进一步提高故障识别率。经实例验证,基于Hilbert模量与改进BP神经网络的电机故障诊断方法性能良好。  相似文献   

15.
牛健  张志飞  汤铭辉  赵才  王坤 《电源学报》2023,21(5):128-137
随着新能源技术的发展和普及,大量非线性用电设备接入电网对其电能质量产生了严重影响。为解决谐波扰动信号对电力系统带来的影响,提出将改进的局部均值分解LMD(local mean decomposition)和概率神经网络相结合,构造一种电压扰动分类器,对电力系统中的电压扰动信号进行识别分类。通过构造三角波形自适应地延拓扰动信号的方法抑制LMD的端点效应,应用改进LMD算法对扰动信号进行3层分解,得到具有电压信号幅频信息的乘积函数PF(product function)分量,将由PF分量构造的信号能量作为概率神经网络的输入,以识别和分类电压干扰信号。通过建立训练模型对电压扰动信号进行仿真实验,结果表明,该方法可以准确识别电压扰动信号,有助于提高电力系统中电压扰动信号的识别精度。  相似文献   

16.
针对电能质量扰动信号识别算法复杂、识别率低等问题,提出一种将长短时记忆神经网络应用于电能质量扰动信号识别分类的新方法。首先在 Tensorflow中搭建长短时记忆神经网络,建立电能质量扰动信号分类模型。其次利用分类模型对电能质量扰动信号原始数据进行有监督学习,提取扰动信号的深层次特征,并将其连接到Softmax分类器输出各扰动信号的识别率。最后将电能质量扰动信号通过递归图生成的二维轨迹图像作为分类模型的输入,通过训练模型实现扰动信号的分类。仿真结果表明,该分类模型对电能质量扰动信号的一维和二维表示均有较好的分类准确率,可以有效识别7种单一扰动和6种复合扰动信号。  相似文献   

17.
电能质量扰动的分类识别对电能质量综合治理具有重要意义,为此提出了一种基于粒子群优化极限学习机的电能质量扰动分类新方法。利用小波变换将扰动信号做10层分解,提取有效区分扰动信号类型层数的能量差、能量差平均值及能量差的标准差作为特征向量,并将扰动信号与正常信号的均方根作为补充,减少输入向量维度。提出采用极限学习机训练误差作为粒子群的适应度函数来优化隐含层神经元个数,在提升分类速度的基础上保持较高的分类精度。经仿真验证表明,该方法能够准确有效地识别常见的7种扰动类型,相比于传统的BP神经网络具有较高的分类速度。  相似文献   

18.
基于小波和改进神经树的电能质量扰动分类   总被引:3,自引:1,他引:2       下载免费PDF全文
准确地识别和分类电能质量扰动对分析和综合治理电能质量问题具有重要意义。提出了一种基于小波和改进神经树的电能质量扰动分类方法。该方法利用小波分解扰动信号到各个频带,在基频频带、谐波频带和高频带上分别计算其能量值和小波系数熵作为特征值,另计算基波频带扰动过程的均方根作为特征的补充,融合能量值、熵和均方根值作为扰动判断的特征向量,规范化后输入到改进神经树分类器进行训练和分类。改进神经树分类器是由神经网络和决策树及其分类规则构成。仿真表明,该方法提取特征值的计算量小且融合后的特征向量能够很好地体现不同扰动信号之间的差异信息,构造的改进神经树分类器结合了神经网络和决策树在模式分类中各自的优点,结构简单且表现出良好的收敛性、全局最优性和泛化性,分类准确率较高,能够有效地识别七种常见的电能质量扰动。  相似文献   

19.
电能质量扰动的快速检测是高质量供电的基础。提出一种基于斜率改进方法(ISBM)用于边界延拓和迭代HHT电能质量扰动检测方法,一方面由于信号的首末两端信息不足,采用ISBM算法进行边界延拓;另一方面,为了解决高频小产生模态混叠的现象,提出了迭代HHT算法,准确提取出高频小信号扰动特征信息。最后通过仿真对比分析得出本文提出的方法在一定程度上可以识别出高频小幅值特征,并使得边界特征波动变得平稳,更加逼近真实情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号