首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of ice crystals can cause serious problems, such as frozen products deterioration, road damage, energy losses, and safety risks of human beings. Antifreeze peptides (AFPs), a healthy and effective cryoprotectant, have great potential as ice crystal growth inhibitors for a variety of frozen products. In this review, methods and technologies for the production, purification, evaluation, and characterization of AFPs are comprehensively summarized. First, this review describes the preparation of AFPs, including the methods of enzymatic hydrolysis, chemical synthesis, and microbial fermentation. Next, this review introduces the major methods by which to evaluate AFPs’ antifreeze activity, including nanoliter osmometer, differential scanning calorimetry, splat-cooling, the biovaluation model, and novel technology. Moreover, this review presents an overview of the molecular characteristics, structure–function relationships, and action mechanisms of AFPs. Furthermore, advances in the application of AFPs to frozen food, including frozen dough, meat products, fruits, vegetable products, and dairy, are summarized and holistically analyzed. Finally, challenges of AFPs and future perspectives on their use are also discussed. An understanding of the production, structure–function relationships, mechanisms and applications of AFPs provides inspiration for further research into the use of AFPs in food science and food nutrition applications.  相似文献   

2.
Interactions between plant-based proteins (PP) and phenolic compounds (PC) occur naturally in many food products. Recently, special attention has been paid to the fabrication of PP–PC conjugates or complexes in model systems with a focus on their effects on their structure, functionality, and health benefits. Conjugates are held together by covalent bonds, whereas complexes are held together by noncovalent ones. This review highlights the nature of protein–phenolic interactions involving PP. The interactions of these PC with the PP in model systems are discussed, as well as their impact on the structural, functional, and health-promoting properties of PP. The PP in conjugates and complexes tend to be more unfolded than in their native state, which often improves their functional attributes. PP–PC conjugates and complexes often exhibit improved in vitro digestibility, antioxidant activity, and potential allergy-reducing activities. Consequently, they may be used as antioxidant emulsifiers, edible film additives, nanoparticles, and hydrogels in the food industry. However, studies focusing on the application of PP–PC conjugates and complexes in real foods are still scarce. Further research is therefore required to determine the structure–function relationships of PP–PC conjugates and complexes that may influence their application as functional ingredients in the food industry.  相似文献   

3.
With the purpose to improve the physico-chemical performance of plain gelatin and chitosan films, compound gelatin–chitosan films were prepared. The effect of the gelatin origin (commercial bovine-hide gelatin and laboratory-made tuna-skin gelatin) on the physico-chemical properties of films was studied. The dynamic viscoelastic properties (elastic modulus G′, viscous modulus, G″ and phase angle) of the film-forming solutions upon cooling and subsequent heating revealed that the interactions between gelatin and chitosan were stronger in the blends made with tuna-skin gelatin than in the blends made with bovine-hide gelatin. As a result, the fish gelatin–chitosan films were more water resistant (∼18% water solubility for tuna vs 30% for bovine) and more deformable (∼68% breaking deformation for tuna vs 11% for bovine) than the bovine gelatin–chitosan films. The breaking strength of gelatin–chitosan films, whatever the gelatin origin, was higher than that of plain gelatin films. Bovine gelatin–chitosan films showed a significant lower water vapour permeability (WVP) than the corresponding plain films, whereas tuna gelatin–chitosan ones were only significantly less permeable than plain chitosan film. Complex gelatin–chitosan films behaved at room temperature as rubbery semicrystalline materials. In spite of gelatin–chitosan interactions, all the chitosan-containing films exhibited antimicrobial activity against Staphylococcus aureus, a relevant food poisoning. Mixing gelatin and chitosan may be a means to improve the physico-chemical performance of gelatin and chitosan plain films, especially when using fish gelatin, without altering the antimicrobial properties.  相似文献   

4.
A total of 286 wheat samples for human consumption collected during 1997–2003 from four wheat-producing localities of south-western Uruguay were screened for deoxynivalenol (DON). Quantification was carried on by an immunochemical method using immunoaffinity columns and fluorimetric detection. The incidence of DON was high during the whole survey (58.5–100%), except in 1998 and 1999 in which no contamination occurred. During 2001 and 2002, 100% of samples contained detectable levels of DON, being the mean DON contents 6593 and 5880 µg kg?1, respectively. The annual maximum levels ranged from 8800 to 11,400 µg kg?1. A positive correlation between DON levels and precipitation was seen. The 70% of wheat samples destined for human consumption were contaminated with DON. To avoid the introduction of contaminated materials into the food chain process, the adoption of regular screening of the DON level in wheat is recommended, particularly in years with heavy rainfall during the flowering-to-early stages of grain maturity months.  相似文献   

5.
6.
7.
A headspace-solid phase micro-extraction (HS-SPME) GC–MS method has been developed for the determination of coumarin, vanillin and ethyl vanillin in vanilla products. Limits of detection ranged from 1.33 to 13.2 ng mL−1. Accuracy and precision data for the method were measured and compared to those obtained using LC-ESI-MS. A survey of 24 commercially available vanilla products was completed using both techniques. No coumarin was detected in any of the samples. Examination of the GC–MS chromatograms revealed the presence of 18 other flavor related compounds in the samples. The method validation and sample analysis data using HS-SPME-GC–MS were comparable to those obtained using the LC–MS method. Because the two methods are conceptually different from one another, both methods would not be subject to the same interferences. This would allow them to be used as confirmatory methods for each other.  相似文献   

8.
Chitosan films incorporated with various concentrations of gallic acid were prepared and investigated for antimicrobial, mechanical, physical and structural properties. Four bacterial strains that commonly contaminate food products were chosen as target bacteria to evaluate the antimicrobial activity of the prepared gallic acid–chitosan films. The incorporation of gallic acid significantly increased the antimicrobial activities of the films against Escherichia coli, Salmonella typhimurium, Listeria innocua and Bacillus subtilis. Chitosan films incorporated with 1.5 g/100 g gallic acid showed the strongest antimicrobial activity. It was also found that tensile strength (TS) of chitosan film was significantly increased when incorporating 0.5 g/100 g gallic acid. Inclusion of 0.5 g/100 g gallic acid also significantly decreased water vapor permeability (WVP) and oxygen permeability (OP). Microstructure of the films was investigated by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) and it was found that gallic acid was dispersed homogenously into the chitosan matrix.  相似文献   

9.
10.
Ohmic heating (OH) is a new heating method with high electrothermal conversion, simple equipment, high accuracy of temperature control, and rapid heating. It is used in cooking rice. This study aimed to investigate the effects of OH on the expansion behavior of rice grains, changes in the electrical conductivity (EC) of each component, temperature, and quality at different heating rates (3 °C/min, 6 °C/min, and 9 °C/min). The EC of the rice grains was calculated using the equivalent circuit method. The results showed that the total volume of the water–rice mixture did not change significantly during the heating stage of OH cooking of rice. The volume and the proportion of rice in the water–rice mixed layer increased slowly before 62.5 °C and then rapidly after that. The EC of the water layer rice soaking water was lower than that of the water–rice mixed layer rice soaking water. The regression models of the volume of the water–rice mixed layer, the proportion of rice in the mixed layer, and the EC of each component were established. Besides, the internal temperature distribution was uneven due to the difference in the EC of each part of the mixture, and the temperature gradually decreased from top to bottom. Hence, the upper rice grains softened faster. This finding provided technical support to develop an automatic rice cooking device with high efficiency using OH.  相似文献   

11.
Randomly selected domestic and export shipments (n = 1907) of Canadian durum and other wheat that occurred between 1 January 2010 and 31 December 2012 were analysed for ochratoxin A (OTA). The majority of samples did not contain OTA above the LOQ of 1 μg kg–1. Only 37% of samples analysed contained quantifiable OTA; the median OTA of the positive results was 2.10 μg kg–1. Canada Western Amber Durum shipments contained OTA more frequently, and at slightly higher concentrations, than Canada Western Red Spring wheat. For both wheat classes the frequency of OTA occurrence and mean concentrations appeared to increase in the lower grades, but these increases were not statistically significant. A periodic trend of a late summer increase of mean monthly OTA concentrations in shipments appears tied to the cycle of producer deliveries of wheat to primary grain elevators.  相似文献   

12.
In order to evaluate effects of starches (corn starch, potato starch, and tapioca starch) on the characteristics of surimi–beef gels with microbial transglutaminase, the cooking loss, gel strength, color and rheological properties of samples were investigated. Results demonstrated that starches gave negative effects on the cooking loss of surimi–beef gels. The gel with corn starch had the highest cooking loss while that with tapioca starch showed the lowest value. The gel with potato starch obtained the highest gel strength. During the sol–gel transitions, surimi–beef complexes with 3% corn starch exhibited the highest storage modulus value, while that with 3% tapioca starch had the lowest one. The addition of starch caused the increase of L* values of surimi–beef gels. Results showed that the excessive amount of starch resulted in the decrease in gel strength of surimi–beef gels.  相似文献   

13.
14.
The traditionally derived syrup of Opuntia ficus-indica fruit is commonly used in homemade confectionery. Herein, the aqueous-acetone extract prepared from the Tunisian O. ficus-indica syrup was investigated. The qualitatively and quantitatively polyphenolic content was analysed using reversed-phase high-performance liquid chromatography–diode array detection (RP-HPLC–DAD) coupled to electrospray ionisation–mass spectrometry (ESI–MS). The extract contained 19.95?±?2.01 mg phenolics per gram of fresh starting material with isorhamnetin 3-O-robinobioside as the major compound (22.76%). The syrup extract showed strong antioxidant potentials as assessed by both ABTS and DPPH functional methods. It exhibited effective antimicrobial activity, particularly against Staphylococcus aureus and Staphylococcus epidermidis with a minimal bactericide concentration (MBC) of 1.3 mg phenolics/ml. Furthermore, at final concentrations in the range of 41.38–186.25 μg polyphenols/ml, the extract decreased human SH-SY5Y neuroblastoma and 3T3 fibroblast in vitro cell viability in a dose- and time-dependent manner compared to non-treated control cells. The observed effects were significantly (P?<?0.05) high against cancer lines. Extract concentrations higher than 106.43 μg/ml reduced cancer cells viability to 50–60% 1–3 h post-treatment. Further in vivo insight studies should emphasise and validate the herein obtained results.  相似文献   

15.
16.
17.
The aim of this study was to determine the effect of microwave power during the vacuum–microwave drying (VMD) on sour cherries in terms of drying kinetics, including the temperature profile of dried material, as well as on some quality factors of the finished product including phenolic compounds, antioxidant capacity, and color. The content of phenolic compounds, antioxidant activity, and color change were used as quality indicators of dried sour cherries. Sour cherries were dehydrated by convective drying (CD) at temperatures of 50 °C, 60 °C, and 70 °C and by VMD at the initial microwave power of 240 W, 360 W, and 480 W reduced to 240 W and 120 W in order to avoid a rapid increase in temperature at the critical moisture content of ca. 1 kg/kg dry mass. Control samples were prepared by freeze drying (FD). The increase in air temperature during CD as well as the increase in material temperature during VMD deteriorated dried product quality in terms of the content of phenolic compounds, antioxidant activity, and color, which was consistent with anthocyanins content. However, VMD turned out to be much better than CD and competitive to FD. The best quality of the dried product and its more attractive color were achieved at VMD at 480 W followed by drying at microwave power reduced to 120 W, which corresponds to anthocyanins content. In addition, the drying process had a positive impact on contents of quercetin and keampferol derivatives. Dried sour cherries have a long shelf life and therefore may be a fine alternative to fresh fruit all year round.  相似文献   

18.
A newly developed method for simultaneous determination of aspartame, acesulfame-K, saccharin, citric acid and sodium benzoate in various diet supplements and non-alcoholic beverages in a single run is presented. The analytes were analysed by high-performance liquid chromatography coupled to a charged aerosol (Corona CAD) and ultraviolet–diode array detectors simultaneously connected in series. Mass spectrometer MicrOTOF-QII from Bruker Daltonik (Bremen, Germany) was used to obtain the mass spectra for peak identifications. The method was validated using a Thermo Hypersil Gold-C18 column packed with 5 μm shell particles (150 × 4.6 mm) and methanol–water with 0.05 % TFA gradient mobile phase at a flow rate of 0.80 mL/min. The elaborated method was validated for linearity, precision and accuracy. The analytical results obtained in the validation study were highly satisfying; the recoveries for the analytes studied ranged between 98.1 and 101 % and the precision values from 0.11 to 1.73 %. By these procedures, the three sweeteners (aspartame, acesulfame-K and saccharin), citric acid and sodium benzoate could be well separated and quantitatively determined in varied food products. Hundred millilitres of soft drinks contained on average 5.50 mg of aspartame, 6.38 mg of saccharin, 8.94 mg of acesulfame-K, 9.05 mg of sodium benzoate and 111 mg of citric acid. Citric acid was the most abundant additive in all the samples analysed except for table sweeteners, and its highest concentration was determined in diet supplements, i.e. 347 mg/g. The percentage of adequate daily intake realisation in case of all additives is lower than 10 %, except for sodium benzoate in isotonic drinks (10.1 %).  相似文献   

19.
There has been a growing interest in developing effective strategies to inhibit lipid oxidation in emulsified food products by utilization of natural phenolic antioxidants owing to their growing popularity over the past decades. However, due to the complexity of emulsified systems, the inhibition mechanism of phenolic antioxidants against lipid oxidation is rather complicated and not yet fully understood. In order to highlight the importance of polarity of phenolic antioxidants in emulsified systems according to the polar paradox, this review covers the recent progress on chemical, enzymatic, and chemoenzymatic lipophilization techniques used to modify the polarity of antioxidants. The partitioning behavior of phenolic antioxidants at the oil–water interface, which can be influenced by the presence of synthetic surfactants and/or antioxidant emulsifiers (e.g., polysaccharides, proteins, and phospholipids), is discussed. In addition, the emerging phenolic antioxidants among phenolic acids, flavonoids, tocopherols, and stilbenes applied in food emulsions are elaborated. As well, the interactions of polar–nonpolar antioxidants are stressed as a promising strategy to induce synergistic interactions at oil–water interface for improved oxidative stability of emulsions.  相似文献   

20.
Protein–polysaccharide interactions are of great importance in the design of dairy formulations, as they play a key role in the formation of structure and texture in dairy products. With a detailed understanding of the factors affecting the interactions, the ability of charged polysaccharides to associate with the milk proteins is continuously exploited to create functional complexes, novel ingredients and delivery systems. In addition, formulations containing non-interacting polysaccharides also need to be carefully controlled, as these biopolymers may give rise to segregative phase separation, with important consequences to the stability and quality of the final matrix. As casein micelles play a major role in imparting structure to dairy products, emphasis in this review will be given to the molecular details of the interactions between polysaccharides with these protein particles. Some of the most researched polysaccharides will be highlighted in this context, and the progress made in understanding their role during structure formation of dairy matrices will be discussed. The opportunity of creating novel microstructures provided by association or/and incompatibility of milk proteins and different polysaccharides will be assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号