首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
探索了全厚度缝合复合材料闭孔泡沫芯夹层结构低成本制造的工艺可行性及其潜在的结构效益。选用3 种夹层结构形式, 即相同材料和工艺制造的未缝合泡沫芯夹层和缝合泡沫芯夹层结构及密度相近的Nomex 蜂窝夹层结构, 完成了密度测定、三点弯曲、平面拉伸和压缩、夹层剪切、结构侧压和损伤阻抗/ 损伤容限等7 项实验研究。结果表明, 泡沫芯夹层结构缝合后, 显著提高了弯曲强度/ 质量比、弯曲刚度/ 质量比、面外拉伸和压缩强度、剪切强度和模量、侧压强度和模量、冲击后压缩(CAI) 强度和破坏应变。这种新型结构形式承载能力强、结构效率高、制造维护成本低, 可以在飞机轻质机体结构设计中采用。   相似文献   

2.
The mechanical properties of a sandwich composite containing interfacial cracks or impact damage are compared when loaded in edgewise compression, flexure or shear. The composite is made from glass fibre reinforced polymer (GFRP) laminate skins over a core of foamed poly vinyl chloride (PVC), and this sandwich material is used in some naval minehunting ships. The properties are reduced with increasing interfacial crack or impact damage length, but only when the defects cause a change in the failure mode, which is dependent on the load state. The principal failure modes under the different load states are compared. The properties are also dependent on the severity of impact damage, with low energy damage to the skin having a smaller effect on stiffness and strength than high energy impacts which damage both the skin and foam core. The implications of these findings on the structural integrity of a minehunting ship made from GFRP/PVC foam sandwich composite is discussed.  相似文献   

3.
The mechanical performance of 3D woven sandwich composites   总被引:9,自引:0,他引:9  
Composite sandwich structures were manufactured from a 3D woven fabric consisting of two face fabrics interconnected by pile yarns (Distance Fabric). Specimens were produced from Distance Fabric (DF) consolidated with vinyl ester resin with and without a polyurethane foam core and compared to specimens produced from a precast polyurethane foam core with composite skins added separately. Flatwise compression, edgewise compression, climbing drum peel and flexure tests were conducted and all demonstrated a dramatic improvement in properties from the combination of DF and foam core. These improvements are postulated to arise from the mutual reinforcement of the pile yarns and foam core.  相似文献   

4.
以泡沫铝为夹芯材料,玄武岩纤维(BF)和超高分子量聚乙烯纤维(UHMWPE)复合材料为面板,制备夹层结构复合材料。研究纤维类型、铺层结构和芯材厚度对泡沫铝夹层结构复合材料冲击性能和损伤模式的影响规律,并与铝蜂窝夹层结构复合材料性能进行对比分析。结果表明:BF/泡沫铝夹层结构比UHMWPE/泡沫铝夹层结构具有更大的冲击破坏载荷,但冲击位移和吸收能量较小。BF和UHMWPE两种纤维的分层混杂设计比叠加混杂具有更高的冲击破坏载荷和吸收能量。随着泡沫铝厚度的增加,夹层结构复合材料的冲击破坏载荷降低,破坏吸收能量增大。泡沫铝夹层结构比铝蜂窝夹层结构具有更高的冲击破坏载荷,但冲击破坏吸收能量较小;泡沫铝芯材以冲击部位的碎裂为主要失效形式,铝蜂窝芯材整体压缩破坏明显。  相似文献   

5.
分别开展缝合气凝胶夹芯复合材料在不同温度下的面内压缩试验,研究材料在室温、300℃、600℃和800℃下的面内压缩力学性能,并采用微焦点工业CT扫描的方法对试样内部结构进行分析,结合有限元分析方法,探究其结构破坏机制。结果表明:在面内压缩载荷作用下,材料存在极限载荷,面板的局部屈曲、芯层的剪切破坏以及缝线柱的断裂是材料破坏的主要方式。随着温度的升高,材料的面内压缩模量和极限载荷也逐渐升高,面板破坏处的断口逐渐呈现出类似脆性的断裂。300℃、600℃和800℃下材料的面内压缩模量分别为室温的1.05倍、1.57倍和1.65倍;极限载荷分别为室温的1.14倍、1.46倍和1.67倍。室温下有限元分析结果和试验结果的对比,验证了缝合气凝胶夹芯复合材料面内压缩破坏模式的合理性。  相似文献   

6.
为了进一步提高泡沫夹层复合材料的承载能力和综合性能,实现其在轨道交通及汽车等工业领域的应用,开展了玻璃纤维立体织物增强环氧树脂泡沫(GF-Fabric/EP)复合材料的制备及其力学性能的研究。制备GF-Fabric/EP复合材料及其夹层结构,探索了GF-Fabric/EP复合材料及其夹层结构的失效行为,以揭示立体织物的增强机制。结果表明:立体织物的引入可显著改善GF-Fabric/EP复合材料的强度、刚度及破坏应变;但在不同承载条件下,各纱线发挥承载作用和效果不同。面板、芯材各自的性能、尺寸及面/芯界面性能均是影响GF-Fabric/EP夹层复合材料力学性能及失效特征的重要因素。以三点加载下的弯曲性能为例,针对不同的GF-Fabric/EP夹层复合材料,需调整跨厚比和试样尺寸并获得理想的失效特征,方可对其弯曲性能或层间剪切性能进行有效、合理的评价。  相似文献   

7.
Aluminium foam composites – applications in railroad manufacturing After their rediscovery in the beginning of the 90ies foamed metals are now being produced on an industrial scale. In most applications the aluminium foam is used as composite material, i.e. in combination with other materials. The composites can be distinguished into flat or complex shaped sandwich structures on the one hand, and 3‐dimensional shaped foam parts on the other hand. The processes and feasible geometries are described. The material properties and the industrial applications are illustrated. Within a publicly funded project the utilisation of sandwich composites with an aluminium foam core layer was evaluated regarding applications for railroad vehicles. The central aim of the investigation was the production of a large segment of the vehicle’s front module. Results of this project are presented.  相似文献   

8.
Syntactic foam, balsa wood and PVC foams are commonly used as core materials in sandwich structures for weight critical applications such as aircraft and ship structures. Water absorption is highly undesirable in these applications. The present study evaluates the effect of water immersion on three types of core materials, namely, Eco-Core, balsa wood and PVC foam. Eco-Core is a new fire resistant core material under development that utilizes about 83% by weight of fly ash. Designers of naval ships and aircraft commonly specify balsa wood and PVC foam as core materials for sandwich structures. These three core materials were subjected to water immersion to determine the relative resistance to property change. Both tap water as well as seawater was used. Core samples were studied for dimensional change, weight gain and compression properties after water immersion and the results were compared with the test results of dry core samples. Time periods included in the study ranged from 4 h to 500 days. The results showed that Eco-Core is as good as PVC foam in resisting swelling, water absorption and changes in compression properties due to water immersion. Where as balsa wood showed a significant swelling, water absorption and deterioration of compression properties.  相似文献   

9.
This paper addresses the effect of local indentation/impact damage on the bearing capacity of foam core sandwich beams subjected to edgewise compression. The considered damage is in a form of through-width zone of crushed core accompanied by a residual dent in the face sheet. It is shown that such damage causes a significant reduction of compressive strength and stiffness of sandwich beams. Analytical solutions estimating the Euler’s local buckling load are obtained for two typical modes of damage. These solutions are validated through experimental investigation of three sandwich configurations. The results of the analytical analysis are in agreement with the experimental data.  相似文献   

10.
The purpose of this study is to improve the mechanical performance of the foam core sandwich composites with a rather simpler method of core reinforcement. With this aim; sandwich composite panels are manufactured using only-perforated foam and perforated-stitched foam as the core with multi-axial glass fabrics as the facesheet materials by vacuum infusion method using epoxy resin. Sandwich composites with perforated core, stitched core and plain core have been compared in terms of compressive, bending, shear and impact performances. It was seen that newly proposed perforated core specimens and stitched core specimens with relatively insignificant weight increase have superior mechanical performances than plain core specimens. Thus reinforcing foam core with perforation and stitching is proposed as simpler but very effective method in performance improvement for the sandwich composites.  相似文献   

11.
This paper addresses the effect of a local quasi-static indentation or a low-velocity impact on the residual strength of foam core sandwich panels subjected to edgewise compression. The damage is characterized by a local zone of crushed core accompanied by a residual dent in the face sheet. Experimental studies show that such damage can significantly alter the compressive strength. Theoretical analysis of the face sheet local bending is performed for two typical damage modes (with or without a face–core debonding). The solutions allow estimation of the onset of (a) an unstable dent growth (local buckling) or (b) a compressive failure in the face sheet. The theoretical results are in agreement with the test data for two considered sandwich configurations.  相似文献   

12.
The flexural behaviour of a new generation composite sandwich beams made up of glass fibre-reinforced polymer skins and modified phenolic core material was investigated. The composite sandwich beams were subjected to 4-point static bending test to determine their strength and failure mechanisms in the flatwise and the edgewise positions. The results of the experimental investigation showed that the composite sandwich beams tested in the edgewise position failed at a higher load with less deflection compared to specimens tested in the flatwise position. Under flexural loading, the composite sandwich beams in the edgewise position failed due to progressive failure of the skin while failure in the flatwise position is in a brittle manner due to either shear failure of the core or compressive failure of the skin followed by debonding between the skin and the core. The results of the analytical predictions and numerical simulations are in good agreement with the experimental results.  相似文献   

13.
Blast impact response of aluminum foam sandwich composites   总被引:1,自引:0,他引:1  
Military and civilian structures can be exposed to intentional or accidental blasts. Aluminum foam sandwich structures are being considered for energy absorption applications in blast resistant cargo containers, ordnance boxes, transformer box pads, etc. This study examines the modeling of aluminum foam sandwich composites subjected to blast loads using LS-DYNA software. The sandwich composite was designed using laminated face sheets (S2 glass/epoxy and aluminum foam core. The aluminum foam core was modeled using an anisotropic material model. The laminated face sheets were modeled using material models that implement the Tsai-Wu and Hashin failure theories. Ablast load was applied using the CONWEP blast equations (*LOAD_BLAST) in LS-DYNA. This paper discusses the blast response of constituent S2-glass/epoxy face sheets, the closed cell aluminum foam core as well as the sandwich composite plate.  相似文献   

14.
This study involved experimental investigation onto the flexural behaviour of glue-laminated fibre composite sandwich beams with a view of using this material for structural beams. Composite sandwich beams with 1, 2, 3, and 4 composite sandwich panels glued together were subjected to 4-point static bending test in the flatwise and edgewise positions to evaluate their stiffness and strength properties. The results showed that the composite sandwich beams in the edgewise position failed with 25% higher bending strength but have 7% lower bending stiffness than beams in the flatwise position. The results however indicated that the bending stiffness of flatwise specimens converges to that of the edgewise specimens with increasing laminations. More importantly, the specimens in the edgewise position failed with greater ductility due to progressive failure of the fibre composite skins while the specimens in the flatwise position failed in a brittle manner due to debonding between the skin and core. Wrapping the glue-laminated sandwich beams with one layer of tri-axial glass fibres did not prove to be effective. Overall, it has been demonstrated that the glue-laminated sandwich beams exhibited better performance than the individual composite sandwich beams.  相似文献   

15.
16.
Jute fibres-reinforced sandwich regenerated composite panels were fabricated using industrial waste thermosetting styrene-co-acrylonitrile (SAN) foam scraps via compression moulding for the purpose of recycling waste SAN foam and obtaining high physical performance. The jute fibres were, respectively, treated by heat, sodium hydroxide (NaOH) solution (5.0 wt%), and N,N-dimethylacetamide (DMAc) in order to improve the mechanical properties of the composites. The structures and mechanical properties of the composites were studied. The SAN matrix got compact and some crystalline region formed in SAN matrix via compression moulding. The composite reinforced by DMAc-treated jute fibres performed optimum mechanical properties among the regenerated panels whose impact strength, flexural strength, and compressive strength were 19.9 kJ m?2, 41.7 MPa, and 61.0 MPa, respectively. Good interfacial bonding between DMAc-treated fibres and SAN matrix was verified by peel test and exhibited in SEM photographs. Besides, the water absorption of DMAc-treated fibres composite was lower than other SAN/jute fibre-reinforced sandwich composite panels.  相似文献   

17.
Compression failure of sandwich composites made of fibrous carbon-epoxy skins and foam core was investigated using an experimental study. The sandwich specimens had holes and/or partial delamination between the skin and core, and they were subjected to compressive edge loading. Different core thicknesses of sandwich specimens were considered, and hole sizes and locations were varied to examine their effects on the compression failure. The study also included compression of delaminated specimens. In order to better understand the failure mechanism, a numerical study was also conducted. Major modes of failure were core shearing, delamination and skin fracture. Depending on the given parameter, the failure mode was different. The study examined the transition of the failure mode from one kind to another depending on the variation in the parameters such as delamination and hole size and location.  相似文献   

18.
硬质聚氨酯泡沫塑料夹层结构的研制   总被引:5,自引:0,他引:5  
讨论了用作夹层板芯材的阻燃型硬质聚氨酯泡沫塑料的配方、工艺参数及性能。研制了铝蒙皮-硬质聚氨酯泡沫塑料夹层结构。  相似文献   

19.
为了解决传统夹芯结构z向刚度和强度较低的缺点,以近年来出现的z向增强技术之一格构增强技术为研究对象试制了几种不同结构参数的格构增强夹芯复合材料板,取得了良好的增强效果。同时研究了格构增强结构的压缩和弯曲性能,揭示了格构增强结构不同于传统夹芯结构的破坏模式。  相似文献   

20.
Marine composite sandwich structural materials, comprising of low density PVC foam core and carbon fiber reinforced vinyl ester based resin composite facings, are studied for associated degradation in mechanical behavior caused by sea water. This paper presents experimental and analytical results concerning the properties and response of closed cell polymeric foams (PVC H100) and their sandwich composites. Data regarding the elastic properties of foam (shear and Young’s modulus) are collected by means of novel custom made devices and interpreted by means of displacement based analytical models. Emphasis is placed on environmental effects and a novel approach of using expansional strain analogy to study the effects of both sea water and temperature are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号