首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mei Gong   《Energy》2003,28(15):1655-1669
The MIND (Method for analysis of INDustrial energy system) method has been developed for multi-period cost optimization of industrial energy systems. Existing industrial processes can be represented at the desired level of accuracy, i.e. one modeling unit may represent a part of the production process or the whole plant. The optimization method includes both energy and material flows. Nonlinear relations, energy conversion efficiencies and investment costs are linearized by mixed-integer linear programming. A flexible time-scale facilitates the performance of long- and short-term analyses. In order to meet the requirements with regard to sustainable development, the recycling of energy and material flows is becoming more common in many industrial processes. The recycling or reuse of energy and material is managed by feedback loops, which are incorporated into the original MIND method to improve the model and reduce the calculation time. The improved MIND/F method (MIND method with feedback loops) model is applied to a pulp and paper mill in Sweden. A comparison between the original MIND method with manual handling of the feedback loops and the MIND/F method gives highly satisfactory results. Cost optimization using the improved MIND method is well within the given accuracy and computer time and manual calculation time are both reduced considerably. The reuse of energy and material resources is not only an economic advantage, but also implies a reduction of the environmental impact.  相似文献   

2.
Following a brief review of the selection criteria for the various thermal energy storage systems and, in particular, for those techniques which exploit latent, rather than sensible, heat effects, novel systems are described which should, in principle, markedly expand the options available for the rational design of thermal accumulation/redistribution devices.  相似文献   

3.
A new performance parameter for PCM thermal storage systems, the energy storage effectiveness, is defined. This parameter can be used to optimise the design of any PCM thermal storage system to maximise the use of the thermal storage media. The paper presents results of a parametric study using an experimentally validated numerical model for PCM encapsulated in plates. The results are used to calculate the energy storage effectiveness which is ultimately used to optimise the useful energy that can be stored in the PCM thermal storage system. The energy storage effectiveness is also used to compare the useable storage capacity of the PCM relative to a sensible energy storage system.  相似文献   

4.
《Energy》1999,24(2):167-182
The application of exergy (second-law) analysis to aquifer thermal energy storage (ATES) systems is investigated in order to facilitate proper assessments of overall system performances. An elementary ATES model is created, and the corresponding expressions are developed for efficiencies and for the quantities of energy and exergy that are injected and recovered. It is demonstrated that ATES performance measures based on exergy often are more useful and meaningful than those based on energy. Exergy efficiencies account for the temperatures associated with energy transfers to and from an ATES, as well as the quantities of energy transferred, and consequently provide a measure of how nearly ATES systems approach ideal thermodynamic performance. Energy efficiencies do not provide a measure of approach to ideal performance and, in fact, are often misleadingly high because some of the energy recovered can be at too low a temperature to be available for a useful purpose.  相似文献   

5.
A series of compounds of the general formula (n-CnH2n+1NH3)2MCl4 (where M is a divalent metal atom and 8 n 18) undergoing high enthalpy reversible solid-solid phase transitions is considered. Although their transition enthalpy values are lower than those of the corresponding normal paraffins, the advantage of remaining solid after the phase change, together with other properties, makes these compounds of potential interest in the field of thermal energy storage systems.  相似文献   

6.
Solar air conditioning is an important approach to satisfy the high demand for cooling given the global energy situation. The application of phase-change materials (PCMs) in a thermal storage system is a way to address temporary power problems of solar air-conditioning systems. This paper reviews the selection, strengthening, and application of PCMs and containers in latent thermal storage system for solar air-conditioning systems. The optimization of PCM container geometry is summarized and analyzed. The hybrid enhancement methods for PCMs and containers and the cost assessment of latent thermal storage system are discussed. The more effective heat transfer enhancement using PCMs was found to mainly involve micro-nano additives. Combinations of fins and nanoadditives, nanoparticles, and metal foam are the main hybrid strengthening method. However, the thermal storage effect of hybrid strengthening is not necessarily better than single strengthening. At the same time, the latent thermal storage unit has less application in the field of solar air-conditioning systems, especially regarding heat recovery, because of its cost and thermal storage time. The integration of latent thermal storage units and solar air-conditioning components, economic analysis of improvement technology, and quantitative studies on hybrid improvement are potential research directions in the future.  相似文献   

7.
Thermal energy storage is very important to eradicate the discrepancy between energy supply and energy demand and to improve the energy efficiency of solar energy systems. Latent heat thermal energy storage (LHTES) is more useful than sensible energy storage due to the high storage capacity per unit volume/mass at nearly constant temperatures. This review presents the previous works on thermal energy storage used for air conditioning systems and the application of phase change materials (PCMs) in different parts of the air conditioning networks, air distribution network, chilled water network, microencapsulated slurries, thermal power and heat rejection of the absorption cooling. Recently, researchers studied the heat transfer enhancement of the thermal energy storage with PCMs because most phase change materials have low thermal conductivity, which causes a long time for charging and discharging process. It is expected that the design of latent heat thermal energy storage will reduce the cost and the volume of air conditioning systems and networks.  相似文献   

8.
Between 1986 and 2016, industrial energy consumption in Saudi Arabia increased by tenfold, making it one of the largest end-use sectors in the Kingdom. Despite its importance, there appear to be no published econometric studies on aggregate industrial energy demand in Saudi Arabia. We model aggregate industrial energy demand in Saudi Arabia using Harvey’s (1989) Structural Time Series Model, showing that it is both price and income inelastic, with estimated long-run elasticities of −0.34 and 0.60, respectively. The estimated underlying energy demand trend suggests improvements in energy efficiency starting from 2010.Applying decomposition analysis to the estimated econometric equation highlights the prominent roles of the activity effect (the growth in industrial value added) and the structure effect (the shift towards energy-intensive production) in driving industrial energy demand growth. Moreover, the decomposition shows how exogenous factors such as energy efficiency helped mitigate some of that growth, delivering cumulative savings of 6.8 million tonnes of oil equivalent (Mtoe) between 2010 and 2016.Saudi Arabia implemented a broad energy price reform program in 2016, which raised electricity, fuel, and water prices for households and industry. The decomposition results reveal that, holding all else constant, higher industrial energy prices in 2016 reduced the sector’s energy consumption by 6.9 %, a decrease of around 3.0 Mtoe. Saudi policymakers could therefore build on the current policy of energy price reform and energy efficiency standards to mitigate the rate of growth of industrial energy consumption, increase economic efficiency, and maintain industrial sector competitiveness.  相似文献   

9.
The drying needs of agricultural, industrial process heat requirements and for space heating, solar energy is one of the prime sources which is renewable and pollution free. As the solar energy is inconsistent and nature dependent, more often there is a mismatch between the solar thermal energy availability and requirement. This drawback could be addressed to an extent with the help of thermal energy storage systems combined with solar air heaters. This review article focuses on solar air heaters with integrated and separate thermal energy storage systems as well as greenhouses with thermal storage units. A comprehensive study was carried out in solar thermal storage units consisting of sensible heat storage materials and latent heat storage materials. As the phase change heat storage materials offer many advantages over the sensible heat storage materials, the researchers are more interested in this system. The charging and discharging characteristics of thermal storage materials with various operational parameters have been reported. All the possible solar air heater applications with storage units have also been discussed.  相似文献   

10.
The importance of considering homogenous economic agents when estimating energy demand functions is recognized in the literature, but so far data availability problems have explained the prevalence of empirical analyses only at an aggregate level. Motivated by the goal of developing the new industrial module to be adopted by the UK government Department of Business, Energy and Industrial Strategy (BEIS) for their econometric Energy Demand Model, we propose the first cointegration analysis that provides evidence on energy demand elasticities with respect to economic activity and energy price at a disaggregated industrial level. While the average of our estimates are comparable to those of the existing literature on the industrial sector as a whole, we find that there is considerable heterogeneity in relation to the long-run impact of economic activity and energy price on energy consumption, as well as to the speed with which firms re-adjust their equilibrium demand of energy in response to economic shocks. Finally, we learn that long-run disequilibria are tackled through altering the level of energy consumption rather than economic activity, a conclusion that has important implications for policy analysis.  相似文献   

11.
Results of a study to examine the operating characteristics of a 100 kWh thermal energy storage (TES) system suitable for solar thermo electric applications is described. The system chosen consisted of a pebble bed as the primary storage medium and oil as the heat transfer cum storage medium. The operating temperatures considered were between 230 and 250°C with a 20 deg C swing. A full-size unit consisting of a steel tank of volume 10 m3 with 50 mm pebbles, suitable instrumentation and facility for heating the oil was built. The important operating variables and characteristics of the system studied included the transient behaviour of the bed, namely the thermal wave front characteristics. Results of the theoretical analysis of the transient bed behaviour were compared with the experimental data on the wave front propogation characteristics and the comparisons are discussed. The uniformity of flow distribution is also examined.  相似文献   

12.
Packed bed thermal energy storage (TES) systems have been identified in the last years as one of the most promising TES alternatives in terms of thermal efficiency and economic viability. The relative simplicity of this storage concept opens an important opportunity to its implementation in many environments, from the renewable solar‐thermal frame to the industrial waste heat recovery. In addition, its implicit flexibility allows the use of a wide variety of solid materials and heat transfer fluids, which leads to its deployment in very different applications. Its potential to overcome current heat storage system limitations regarding suitable temperature ranges or storage capacities has also been pointed out. However, the full implementation of the packed bed storage concept is still incomplete since no industrial scale units are under operation. The main underlying reasons are associated to the lack of a complete extraction of the full potential of this storage technology, derived from a successful system optimization in terms of material selection, design, and thermal management. These points have been evidenced as critical in order to attain high thermal efficiency values, comparable to the state‐of‐the‐art storage technologies, with improved technoeconomic performance. In order to bring this storage technology to a more mature status, closer to a successful industrial deployment, this paper proposes a double approach. First, a low‐cost by‐product material with high thermal performance is used as heat storage material in the packed bed. Second, a complete energetic and efficiency analysis of the storage system is introduced as a function of the thermal operation. Overall, the impact of both the selected storage material and the different thermal operation strategies is discussed by means of a thermal model which permits a careful discussion about the implications of each TES deployment strategy and the underlying governing mechanisms. The results show the paramount importance of the selected operation method, able to increase the resulting cycle and material usage efficiency up to values comparable to standard currently used TES solutions.  相似文献   

13.
The increase in exergy storage capacity that is attained in thermal storages through stratification is assessed. A design‐oriented temperature‐distribution model for vertically stratified thermal storages that facilitates the evaluation of storage energy and exergy contents is utilized. The paper is directed towards demonstrating the thermodynamic benefits achieved through stratification, and increasing the utilization of exergy‐based performance measures for stratified thermal storages. A wide range of realistic storage‐fluid temperature profiles is considered, and for each the relative increase in exergy content of the stratified storage compared to the same storage when it is fully mixed is evaluated. The results indicate that, for all temperature profiles considered, the exergy storage capacity of a thermal storage increases when it is stratified, and increases as the degree of stratification, as represented through greater and sharper spatial temperature variations, increases. Furthermore, the percentage increase in exergy capacity is greatest for storages at temperatures near to the environment temperature, and decreases as the mean storage temperature diverges from the environment temperature (to either higher or lower temperatures). It is concluded that (i) the use of stratification in thermal storage designs should be considered as it increases the exergy storage capacity of a thermal storage and (ii) exergy analysis should be applied in the analysis and comparison of stratified thermal storage systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
This paper examined the features of three typical thermal storage systems including: 1) direct storage of heat transfer fluid in containers, 2) storage of thermal energy in a packed bed of solid filler material, with energy being carried in/out by a flowing heat transfer fluid which directly contacts the packed bed, and 3) a system in which heat transfer fluid flows through tubes that are imbedded into a thermal storage material which may be solid, liquid, or a mixture of the two. The similarity of the three types of thermal storage systems was discussed, and generalized energy storage governing equations were introduced in both dimensional and dimensionless forms. The temperatures of the heat transfer fluid during energy charge and discharge processes and the overall energy storage efficiencies were studied through solution of the energy storage governing equations. Finally, provided in the paper are a series of generalized charts bearing curves for energy storage effectiveness against four dimensionless parameters grouped up from many of the thermal storage system properties including dimensions, fluid and thermal storage material properties, as well as the operational conditions including mass flow rate of the fluid, and the ratio of energy charge and discharge time periods. Engineers can conveniently look up the charts to design and calibrate the size of thermal storage tanks and operational conditions without doing complicated individual modeling and computations. It is expected that the charts will serve as standard tools for thermal storage system design and calibration.  相似文献   

15.
M.A. Rosen 《Solar Energy》1998,63(2):69-78
The results are reported of an energy-economic analysis of the use of berms in thermal energy storage (TES) systems. The analysis compares the initial cost savings derived from using a bermed tank instead of an in-ground tank, with the additional costs associated with the greater heat losses for the bermed tank over the life of the installation. The main factors considered include: (1) the increased excavation associated with an in-ground tank, (2) the increased wall structural support required for an in-ground tank, (3) the haulage and disposal of excavated soil for an in-ground tank, compared with the haulage and disposal or acquisition of soil for a bermed tank, (4) the forming of soil into a berm, and (5) the increased heat loss associated with a bermed tank. In evaluating the last factor, the findings of previous studies are used by the author into the effects of berms on TES heat losses. As space for the berm is assumed available, the cost associated with any land additionally required for the berm is neglected. The results indicate that tanks having berms are, in most practical instances, economically superior to other tank configurations.  相似文献   

16.
Z.G. Wu 《Solar Energy》2011,85(7):1371-1380
In this paper, the feasibility of using porous materials such as metal foams and expanded graphite to enhance the heat transfer capability of PCMs in high temperature thermal energy storage system is experimentally investigated. Experimental results showed that the heat transfer rate can be enhanced through addition of the porous materials by 2.5 times compared to that of pure NaNO3 in the heating process from 250-300 °C. However the heat transfer rate could be reduced by half in the liquid region since the natural convection can be severely suppressed by the porous structures. In an attempt to further reveal the natural convection effect in PCMs embedded in porous materials, two heating methods (boundary conditions) are examined. Finally the issue of corrosion process is briefly discussed.  相似文献   

17.
可再生能源储能电站的长期稳定运行与储能系统的热量管理息息相关,合理的热量管理策略能够保障储能电站的经济性与安全性.为了合理有效地进行储能系统热量管理,本文综合电池寿命成本,以日内实时调度的最高净盈利作为优化目标,提出了考虑热量管理与电池寿命损耗成本的储能电站调度策略.并利用分片McCormick方法将双线性项精细线性化...  相似文献   

18.
Energy storage is one of the key technologies for energy conservation and therefore is of great practical importance. One of its main advantages is that it is best suited for solar thermal applications. This study deals with a comprehensive discussion of the evaluation and the selection of sensible and latent heat storage technologies, systems and applications in the field of solar energy. Several issues relating to energy storage are examined from the current perspective. In addition, some criteria, techniques, recommendations, checklists on the selection, implementation and operation of energy storage systems are provided for the use of energy engineers, scientists and policy makers. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
节能的地下含水层蓄热(冷)器   总被引:5,自引:0,他引:5  
分析了地下含水层蓄热(冷)的特点,阐述了使用含水层蓄热(冷)的系统节能和环保的重要意义,介绍了一些欧洲应用实例。  相似文献   

20.
A large number of industrial processes demand thermal energy in the temperature range of 80–240 °C. In this temperature range, solar thermal systems have a great scope of application. However, the challenge lies in the integration of a periodic, dilute and variable solar input into a wide variety of industrial processes. Issues in the integration are selection of collectors, working fluid and sizing of components. Application specific configurations are required to be adopted and designed. Analysis presented in this paper lays an emphasis on the component sizing. The same is done by developing a design procedure for a specific configuration. The specific configuration consists of concentrating collectors, pressurized hot water storage and a load heat exchanger. The design procedure follows a methodology called design space approach. In the design space approach a mathematical model is built for generation of the design space. In the generation of the design space, design variables of concern are collector area, storage volume, solar fraction, storage mass flow rate and heat exchanger size. Design space comprises of constant solar fraction curves traced on a collector area versus storage volume diagram. Results of the design variables study demonstrate that a higher maximum storage mass flow rates and a larger heat exchanger size are desired while limiting storage temperature should be as low as possible. An economic optimization is carried out to design the overall system. In economic optimization, total annualized cost of the overall system has been minimized. The proposed methodology is demonstrated through an illustrative example. It has been shown that 23% reduction in the total system cost may be achieved as compared to the existing design. The proposed design tool offers flexibility to the designer in choosing a system configuration on the basis of desired performance and economy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号