首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B4C/Al复合材料是目前最理想的中子吸收材料,广泛用于乏燃料储存。本文利用液态搅拌法制备B4C/Al复合材料,通过添加Ti元素,探讨了界面反应对材料的界面结构和力学性能的影响。研究发现,Ti元素通过参与界面反应,改变了界面结构,在B4C颗粒表面形成了紧密结合的纳米TiB2界面层;Ti的添加消除了界面微裂纹、微孔、分离等缺陷。随着界面反应程度的加强,材料强度提高,尤其反应脱落的纳米TiB2颗粒作为原位第二强化相进一步增强基体。B4C/Al复合材料断裂过程表现为韧窝延性断裂;TiB2界面层增强了B4C颗粒与基体的结合,断裂行为从B4C-Al界面脱落转变为B4C颗粒断裂;但过渡的界面反应会形成微韧窝,引起材料延伸率下降。  相似文献   

2.
The fully dense HfB2-ZrB2-SiC composites were processed using spark plasma sintering (SPS) at 1850 °C. The effect of reinforcements (B4C and CNT) on the densification as well as mechanical properties were investigated and compared (with monolithic) in the present study. The study showed that the addition of B4C and CNT were not only beneficial for the densification but also towards enhancing the mechanical properties (hardness, elastic modulus, and fracture toughness) of HfB2-ZrB2-SiC composites. The augmentation in the mechanical properties establish the synergy between solid solution formation (with the equimolar composition of HfB2/ZrB2) and the reinforcements (SiC, B4C, and CNT). The highest increase in the indentation fracture toughness with the reinforcements of B4C as well as CNT is >3 times (~13.8 MPam0.5 when it is 3–4 MPam0.5 for monolithic ZrB2/HfB2) on HfB2-ZrB2-SiC composites, which is attributed to the crack deflection and pull-out mechanisms. An increase in the analytically quantified interfacial compressive residual stresses in the composites during SPS processing with the synergistic addition of reinforcements (SiC, B4C, and CNT) and its effect on the indentation fracture toughness has also been addressed.  相似文献   

3.
In the present study, the densification of Ti/TiB composites, the growth behavior ofin-situ formed TiB reinforcement, the effects of processing variables — such as reactant powder (TiB2, B4C), sintering temperature and time — on the microstructures and the mechanical properties ofin-situ processed Ti/TiB composites have been investigated. Mixtures of TiB2 or B4C powder with pure titanium powder were compacted and presintered at 700°C for 1 hr followed by sintering at 900, 1000, 1100, 1200, and 1300°C, respectively, for 3hrs. Some specimens were sintered at 1000°C for various times in order to study the formation behavior of TiB reinforcementin-situ formed within the pure Ti matrix. TiB reinforcements were formed through different mechanisms, such as the formation of fine TiB and the formation of coarse TiB by Ostwald ripening or the coalescence of fine TiB. There was no crystallographic relationship between TiB reinforcement and the matrix. There were voids at the interface between the TiB reinforcement and the Ti matrix due to the preferential growth of coarse TiB without a particular crystallographic relationship with pure Ti matrix and the surface energy between the Ti matrix and TiB reinforcements. Therefore, the densification of Ti/TiB2 compacts was hindered by the preferential growth of coarse TiB reinforcements. The mechanical properties ofin-situ processed composites were evaluated by measuring the compressive yield strength at ambient and high temperatures. The compressive yield strength of thein situ processed composites was higher than that of the Ti-6A1-4V alloy. It was also found that the compressive yield strength of the composite made from TiB2 reactant powder was higher than that of the composite made from B4C at the same volume fraction of reinforcement. A crack path examination suggested that the bonding nature of interface between matrix and reinforcement made from TiB2 reactant powder was better than that made from B4C.  相似文献   

4.
In this study, Al2024-B4C composites containing 0, 5, 10 and 20 wt% of B4C particles with two different particle sizes (d50=49 μm and d50=5 μm) as reinforcement material were produced by a mechanical alloying method. Two new particle distribution models based on the size of reinforcement materials was developed. The microstructure of the Al2024-B4C composites was investigated using a scanning electron microscope. The effects of reinforcement particle size and weight percentage (wt%) on the physical and mechanical properties of the Al2024-B4C composites were determined by measuring the density, hardness and tensile strength values. The results showed that more homogenous dispersion of B4C powders was obtained in the Al2024 matrix using the mechanical alloying technique according to the conventional powder metallurgy method. Measurement of the density and hardness properties of the composites showed that density values decreased and hardness values increased with an increase in the weight fraction of reinforcement. Moreover, it was found that the effect of reinforcement size and reinforcement content (wt%) on the homogeneous distribution of B4C particles is as important as the effect of milling time.  相似文献   

5.
Preliminary characterization of microstructure and mechanical properties of (TiB + TiC)/TC4 in situ titanium matrix composites prepared by laser direct deposition is reported in this paper. The results indicate that in situ reaction occurred during laser direct deposition of coaxially fed mixed powders from TC4 and B4C. Reinforcements of TiB and TiC with a fraction of about 25 vol.% were formed with feeding 5 wt.% B4C. The morphology of TiB tended to be needle-like and prismatic, while TiC appeared as granular. Small amount of un-reacted B4C with reduced size remained within the composites. A thin skull of reaction product formed around the un-reacted B4C weakened its interface bonding with the titanium alloy matrix, resulting in less outstanding properties of the composites.  相似文献   

6.
WB2-WB3-B4C composites were fabricated from powder mixtures of W and B13C2 by DC arc melting. XRD analysis illustrated that W has reacted with B13C2 and resulted in the formation of WB2-WB3-B4C composites. Vickers hardness of 55.7 ± 8.5 (load 0.49 N) and 34.2 ± 1.1 GPa (load 4.9 N) with corresponding Young's modulus of 575 GPa were observed for the as-synthesized composites. SEM and XPS results revealed that the composites consist of WB2, WB3, B4C, elemental boron and carbon. Raman spectra confirmed that B4C and carbon coexist in the composites. The harden mechanism of the as-synthesized composites including solid-solution hardening and dispersion hardening were analyzed in detail.  相似文献   

7.
A series of boron carbide (B4C) matrix composites with different contents of Al, were synthesized by reaction hot-press sintering with milled B4C and pure metallic Al powder at 1600 °C for 1 h. X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used to identify the phase constituent of the milled powders and the composites. The results have shown that parts of B4C and Al particles were oxidized to boron oxide (B2O3) and alumina (Al2O3) during the milling. Thermit reaction occurred and B2O3 was reverted during hot-press sintering. A ternary phase of Al boron carbide (Al8B4C7) was found in the composites, and the B4C transformed to a rich boron phase (B6.5C) because of the superfluous boron in the system.  相似文献   

8.
The B4C/2024Al composites were successfully produced by pressureless infiltration method, and the effects of heat treatment on phase content and mechanical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical properties testing. The results show that phases of B4C/2024Al composites include B4C, Al, Al3BC, AlB2 and Al2Cu. The phase species remain unchanged; however, the phase content of the composites changes significantly after heat treatment at the temperature of 660, 700, 800 or 900 °C for 12, 24 or 36 h. It is found that the heat treatment results in not only considerable enhancement in hardness, but also reduction in bending strength of the composites. Heat treatment at 800 °C for 36 h does best to hardness of the composites, while at 700 °C for 36 h it is the most beneficial to their comprehensive mechanical properties.  相似文献   

9.
B4C-coated diamond (diamond@B4C) particles are used to improve the interfacial bonding and thermal properties of diamond/Cu composites. Scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were applied to characterize the formed B4C coating on diamond particles. It is found that the B4C coating strongly improves the interfacial bonding between the Cu matrix and diamond particles. The resulting diamond@B4C/Cu composites show high thermal conductivity of 665 W/mK and low coefficient of thermal expansion of 7.5 × 10?6/K at 60% diamond volume fraction, which are significantly superior to those of the composites with uncoated diamond particles. The experimental thermal conductivity is also theoretically analyzed to account for the thermal resistance at the diamond@B4C-Cu interface boundary.  相似文献   

10.
The present work was performed on three aluminium metal matrix composites (MMCs) containing 15 vol.-%B4C particles. The matrix in two of these materials is pure aluminium, whereas the matrix of the third material was an experimental 6063 aluminium alloy. All composites were homogenised at elevated temperatures for 48 h before being quenched in warm water. The quenched samples were aged in the range of 25–400°C for 10 h, at each temperature. Hardness and tensile tests performed on the aged MMCs show that the presence of Zr (with or without Ti) resulted in a noticeable hardening due to the precipitation of a Zr rich phase. Maximum strengthening was obtained from the 6063 based MMC due to the precipitation of Mg2Si phase particles. The present technique used to produce the MMCs examined proved capable of manufacturing composites with a uniform distribution of B4C in the matrix with a strong degree of matrix/particle bonding. When the MMC samples were deformed to failure, the B4C was fractured transgranularly without debonding from the matrix. The addition of Zr and Ti resulted in the formation of protective layers around the B4C particles that were retained after fracture; these protective layers were not affected by the B4C particle size (0·15–20 μm). Stacking faults were commonly observed in fractured Al 6063/B4C/15p samples. The precipitation of zirconium–titanium compounds during aging contributed to the composite strength.  相似文献   

11.
Dry sliding wear behaviour of stir-cast aluminium matrix composites (AMCs) containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated. Two different ceramic particle reinforcements were used separately: synthetic ceramic particles (B4C), and natural ceramic particles (ilmenite). Optical micrographs showed uniform dispersion of reinforced particles in the matrix material. Reinforced particles refined the grain size of eutectic silicon and changed its morphology to globular type. B4C reinforced composites (BRCs) showed maximum improvement in hardness of AMCs. Ilmenite reinforced composites (IRCs) showed maximum reduction in coefficient of friction values due to strong matrix−reinforcement interfacial bonding caused by the formation of interfacial compounds. Dry sliding wear behaviour of composites was significantly improved as compared to base alloy. The low density and high hardness of B4C particles resulted in high dislocation density around filler particles in BRCs. On the other hand, the low thermal conductivity of ilmenite particles resulted in early oxidation and formation of a tribo-layer on surface of IRCs. So, both types of reinforcements led to the improvement in wear properties of AMCs, though the mechanisms involved were very different. Thus, the low-cost ilmenite particles can be used as alternative fillers to the high-cost B4C particles for processing of wear resistant composites.  相似文献   

12.
In this study, different volume fractions of B4C particles were incorporated into the aluminum alloy by a mechanical stirrer, and squeeze-cast A356 matrix composites reinforced with B4C particles were fabricated. Microstructural characterization revealed that the B4C particles were distributed among the dendrite branches, leaving the dendrite branches as particle-free regions in the material. It also showed that the grain size of aluminum composite is smaller than that of monolithic aluminum. X-ray diffraction studies also confirmed the existence of boron carbide and some other reaction products such as AlB2 and Al3BC in the composite samples. It was observed that the amount of porosity increases with increasing volume fraction of composites. The porosity level increased, since the contact surface area was increased. Tensile behavior and the hardness values of the unreinforced alloy and composites were evaluated. The strain-hardening behavior and elongation to fracture of the composite materials appeared very different from those of the unreinforced Al alloy. It was noted that the elastic constant, strain-hardening and the ultimate tensile strength (UTS) of the MMCs are higher than those of the unreinforced Al alloy and increase with increasing B4C content. The elongation to fracture of the composite materials was found very low, and no necking phenomenon was observed before fracture. The tensile fracture surface of the composite samples was indicative of particle cracking, interface debonding, and deformation constraint in the matrix and revealed the brittle mode of fracture.  相似文献   

13.
Dense boron carbide (B4C) – silicon carbide (SiC) composites were obtained by spark plasma sintering technique at 1800°C with 3 wt% and 6 wt% aluminium oxide (Al2O3) additives. Addition of sintering additives results in formation of aluminium silicate (Al2SiO5) liquid phase which accelerates sintering kinetics and helps in obtaining high density ~ 99%. Microstructures reveal uniformly distributed SiC particles in B4C matrix. Increase in alumina from 3 wt% to 6 wt% results in decrease in hardness from 35.1 ± 0.8 to 33.7 ± 0.9 GPa, and increase in fracture toughness from 5.9 ± 0.4 to 6.5 ± 0.4 MPam0.5. Using a ball-on-disk tribo tester under dry unlubricated conditions at 5, 10 or 15 N load, influence of alumina content on friction and wear properties of B4C-SiC composites was investigated against SiC counterbody with a linear speed of 0.08 m/s for 60 min. The coefficient of friction (COF) increased from 0.25 to 0.65 with load, and the influence of alumina on frictional behaviour appeared to be negligible. With increase in load, wear volume of the composites increased from 7.5 × 10−2 mm3 to 16.1 × 10−2 mm3 for B4C-10 wt% SiC - 3 wt% Al2O3 and from 4.7 × 10−2 mm3 to 14.8 × 10−2 mm3 for B4C-10 wt% SiC - 6 wt% Al2O3 composites. Microcracking, abrasion and pull-outs contributed as major wear mechanisms of composites in selected wear conditions. The relation between wear behaviour and mechanical properties of sintered composites is discussed.  相似文献   

14.
为了解决复合材料中B4C陶瓷相难以被金属铝润湿的问题,利用TiH2和B4C的原位反应引入TiB2,进而调节其润湿性和界面结合.通过将熔融合金压力浸渗到冷冻铸造法制备的多孔陶瓷支架中,制备具有层状结构的2024Al/B4C?TiB2复合材料.与2024Al/B4C复合材料相比,加入TiH2后复合材料的抗弯强度和裂纹扩展韧...  相似文献   

15.
The interfacial reactions of B4C-coated and C-coated SiC fiber reinforced Ti–43Al–9V composites were investigated by scanning electron microscope and transmission electron microscope. The detailed microstructures as well as the chemical composition throughout the reaction zone were identified. For SiCf/B4C/TiAl composite, the reaction zone from B4C coating to TiAl matrix is composed of 4 layers, namely, a carbon-rich layer, a mixed layer of TiB2 + amorphous carbon, a TiC layer and a mixed layer of TiB + Ti2AlC. For SiCf/C/TiAl composite, the reaction zone from C coating to TiAl matrix is composed of 3 layers, namely, a fine-grained TiC layer, a coarse-grained TiC layer and a thick Ti2AlC layer. For both kinds of composites, the reaction mechanisms of the interfacial reactions were analyzed, and the corresponding reaction kinetics were calculated. The activation energies of interfacial reaction in SiCf/B4C/TiAl composite and SiCf/B4C/TiAl composite are 308.1 kJ/mol and 230.7 kJ/mol, respectively.  相似文献   

16.
This paper reports on the development of HfB2 reinforced B4C composite prepared through reaction hot pressing of B4C and HfO2. These composites were characterized for phase composition, microstructure, mechanical and physical properties. Full dense composites were obtained by hot pressing at 1900 °C and a pressure of 40 MPa. HfB2 phase was identified as a reaction product in the composites by XRD analysis. Hardness of all the composites was measured to be in the range of 28–35 GPa. High elastic modulus (525 GPa) and shear modulus (196 GPa) were measured for composite corresponding to 10 wt.% HfO2. Fractography of the composites indicates transgranular mode of fracture. Fracture toughness of the composites was in the range of 4–7 MPa.m1/2 which is higher than that of monolithic B4C (2.43 MPa.m1/2). Microstructural observation of crack propagation patterns indicates the major toughening mechanism as crack deflection, crack arrest and crack bridging.  相似文献   

17.
This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were incrementally added to ethanol solution under mechanical mixing. Al7075 constituents and B4C particles were blended in a high energy ball mill. Cold compacted Al7075/B4C blends were pressed at semisolid state. The effects of the size of the matrix (20, 45 and 63 μm), reinforcing volume fraction (5%, 10% and 20%) and semisolid compaction pressure (50 and 100 MPa) on the morphology, microstructure, density, hardness, compression and bending strength were thoroughly analyzed. Experimental results revealed that the highest microstructural uniformity was achieved when large B4C particles (45 μm) were distributed within the small particles (20 μm) of the matrix phase. Composites with matrix particles larger than reinforcing phase indicated agglomerations in loadings more than 10% (volume fraction). Agglomerated regions resisted against penetration of the liquid phase to the pores and lowered the density and strength of these composites. Composites with 20 μm Al7075 and 20% (volume fraction) 45 μm B4C powder pressed under 100 MPa exhibited the highest values of hardness (HV 190) and compressive strength (336 MPa).  相似文献   

18.
The effect of high alumina talc powder as a sintering aid on densification of boron carbide powder was investigated. The in situ reaction of talc with boron carbide generate SiC, MgB2, and alumina, which all aid the sintering process and permit pressureless sintering at temperatures between 2050 and 2150°C. The microstructure-property relationship has been studied in the B4C-talc system for talc content between 0 and 30 wt.%. It became clear the addition of talc powder has a significant effect on the sintering behavior of B4C. B4C composites along with talc powder additions were sintered up to 98% of theoretical density. The mechanical properties were improved over those of samples without talc addition.  相似文献   

19.
The Fe-based alloy coatings reinforced with in situ synthesized TiB2-TiC were prepared on Q235 steel by reactive plasma cladding using Fe901 alloy, Ti, B4, and graphite(C) powders as raw materials. The effects of C/B4C weight percentage ratio(0-1.38) on the microstructure, microhardness, and wet sand abrasion resistance of the coatings were investigated. The results show that the coatings consist of (Fe, Cr) solid solution, TiC, TiB2, Ti8C5, and Fe3C phases. The decrease of C/B4C ratio is propitious to the formation of TiB2 and Ti8C5. Increasing the C/B4C ratio can help to refine the microstructure of the coatings. However, the microhardness of the middle-upper of the coatings and the wet sand abrasion resistance of coatings degenerate with the increase of C/B4C ratio. The coating exhibits and the wet sand abrasion resistance at C/B4C=0 and its average mass loss rate per unit wear distance is 0.001 2%/m. The change of the wet sand abrasion resistance of the coatings with C/B4C ratio can be mainly attributed to the combined action of the changes of microhardness and the volume percentage of the ceramic reinforcements containing titanium in the coatings.  相似文献   

20.
Diamond/WC-Fe-Ni composite is a potential composition for impregnated diamond drill bits. It is necessary to avoid the graphitization of the diamond from Fe and Ni under the powder metallurgy process. Boron carbide (B4C) was coated on diamond, and diamond/WC-Fe-Ni composites were consolidated by hot pressing at different temperatures. The influences of sintering temperature and interfacial structure on bending strength and wear behavior were investigated. The bending strength for diamond/WC-Fe-Ni composite was dependent on matrix densification and interfacial graphitization. Un-coated diamond was eroded by Fe-Ni matrix and partially converted to graphite during the sintering process at all sintering temperatures. In opposite, B4C coating was beneficial to matrix densification at a lower sintering temperature, and delayed the appearance of graphitization to around 1300 °C. Therefore, the diamond/WC-Fe-Ni composites with B4C coating exhibited larger bending strength and better wear behavior at a relative low sintering temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号