首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rectangular orthotropic sandwich fiber reinforced plastic (FRP) panels were tested for buckling in uniaxial compression. The panels, with either balsa or linear PVC foam cores, were tested in two sizes: 183 cm×92 cm (72 in.×36 in.) and 122 cm×92 cm (48 in.×36 in.) for aspect ratios of 2.0 and 1.3, respectively. The sandwich panels were fabricated using the vacuum-assisted resin transfer molding (VARTM) technique. The two short edges of the sandwich panels were clamped, while the two long edges were simply supported. The experimental elastic buckling loads of panels with an aspect ratio of 1.3 were 400 kN (90 klb) for balsa core panels and 267 kN (60 klb) for foam core panels. For balsa and foam core panels with an aspect ratio 2.0, the experimental buckling loads were 334 kN (75 klb) and 240 kN (54 klb), respectively. Experimental buckling results for balsa core panels of both sizes differed by 5–8% from numerical and analytical results. Differences in experimental and predicted buckling loads for foam core panels ranged between 15% and 23%. Post-buckling collapse of balsa and foam core panels with an aspect ratio of 1.3 were 694 kN (156 klb) and 347 kN (78 klb), respectively. For balsa and foam core panels with an aspect ratio of 2.0, post-buckling collapse occurred at 592 kN (133 klb) and 334 kN (75 klb), respectively. A numerical post-buckling analysis qualitatively followed that of the experimental results.  相似文献   

2.
Syntactic foam, balsa wood and PVC foams are commonly used as core materials in sandwich structures for weight critical applications such as aircraft and ship structures. Water absorption is highly undesirable in these applications. The present study evaluates the effect of water immersion on three types of core materials, namely, Eco-Core, balsa wood and PVC foam. Eco-Core is a new fire resistant core material under development that utilizes about 83% by weight of fly ash. Designers of naval ships and aircraft commonly specify balsa wood and PVC foam as core materials for sandwich structures. These three core materials were subjected to water immersion to determine the relative resistance to property change. Both tap water as well as seawater was used. Core samples were studied for dimensional change, weight gain and compression properties after water immersion and the results were compared with the test results of dry core samples. Time periods included in the study ranged from 4 h to 500 days. The results showed that Eco-Core is as good as PVC foam in resisting swelling, water absorption and changes in compression properties due to water immersion. Where as balsa wood showed a significant swelling, water absorption and deterioration of compression properties.  相似文献   

3.
Mechanical properties and global stability of foam core sandwich structures are highly controlled by the shear response of the core material. In this work, we have studied the shear deformations of three common structural core materials with the aid of full-field optical analysis. The chosen core materials are namely extruded PET foam (ρ = 105 kg/m3, Gxz = 21 MPa,) and cross-linked PVC foam (ρ = 60 kg/m3, Gxz = 22 MPa) which have comparable shear properties, as well as Balsa wood with the lowest density commercially available (ρ = 94 kg/m3, Gxz = 106 MPa) as a reference core material. Both global and local shear strains in the core materials are calculated and graphically visualized. In the elastic region, foam cores showed more uniform deformations than Balsa. Yielding and shear failure of the two foam core materials were quite different. The PVC foam experienced a high local deformation under the load introduction bars, from which sub-interface shear failure initiated. The PET foam, in contrast, showed no sign of stress concentrations, resulting in a homogenous evolution of shear deformations in the mid-core regions. A comparison between the direct foam shear test and sandwich specimen bending suggested that the former method might not be capable of capturing a full picture of the in-service core shear response.  相似文献   

4.
The span limits of two glass fiber-reinforced polymer (GFRP) bridge concepts involving GFRP-balsa sandwich plates are discussed. The sandwich plates were either used directly as slab bridges or as decks of a hybrid sandwich-steel girder bridges. In the latter case, the potential of the sandwich decks to replace reinforced concrete (RC) decks was also evaluated. Taking the limits of manufacturing into account (800 mm slab thickness), maximum bridge spans of approximately 19 m can be reached with FRP-balsa sandwich slab bridges, if a carbon-FRP (CFRP) arch is integrated into the balsa core. Above this limit, hybrid sandwich-steel girder bridges can be used up to spans of 30 m. RC deck replacement requires timber and steel plate inserts into the balsa core above the steel girders. GFRP-balsa sandwich slabs or decks exhibit full composite action between lower and upper face sheets. Stress concentrations occur at the joints between balsa core and timber inserts which however can effectively be reduced by changing from butt to scarf joints.  相似文献   

5.
Balsa wood is one of the preferred core materials in structural sandwich panels, in applications ranging from wind turbine blades to boats and aircraft. Here, we investigate the mechanical behavior of balsa as a function of density, which varies from roughly 60 to 380 kg/m3. In axial compression, bending, and torsion, the elastic modulus and strength increase linearly with density while in radial compression, the modulus and strength vary nonlinearly. Models relating the mechanical properties to the cellular structure and to the density, based on deformation and failure mechanisms, are described. Finally, wood cell-wall properties are determined by extrapolating the mechanical data for balsa, and are compared with the reduced modulus and hardness of the cell wall measured by nanoindentation.  相似文献   

6.
The structure and mechanical response of a Toco toucan (Ramphastos toco) beak were established. The beak was found to be a sandwich composite with an exterior of keratin scales (50 μm diameter and 1 μm thickness) and a core composed of fibrous network of closed-cells made of collagen. The tensile strength of the external shell is about 50 MPa. Micro- and nanoindentation hardness measurements corroborate these values. The keratin shell exhibits a strain-rate sensitive response with a transition from slippage of the scales due to release of the organic glue, at a low strain rate (5 × 10 5 s 1) to fracture of the scales at a higher strain rate (1.5 × 10 3 s 1). The closed-cell foam consists of fibers having a Young's modulus (measured by nanoindentation) of 12.7 GPa. This is twice as high as the keratin shells, which have E = 6.7 GPa. This is attributed to their higher calcium content. The compressive collapse of the foam was modeled by the Gibson–Ashby constitutive equations.There is a synergistic effect between foam and shell evidenced by a finite-element analysis. The foam stabilizes the deformation of the keratin shell by providing an internal support which increases its buckling load under compressive loading.  相似文献   

7.
An experimental study was performed to investigate the effect of high temperature exposure on mechanical properties of carbon fiber composite sandwich panel with pyramidal truss core. For this purpose, sandwich panels were exposed to different temperatures for different times. Then sandwich panels were tested under out-of-plane compression till failure after thermal exposure. Our results indicated that both the thermal exposure temperature and time were the important factors affecting the failure of sandwich panels. Severe reductions in residual compressive modulus and strength were observed when sandwich panels were exposed to 300 °C for 6 h. The effect of high temperature exposure on failure mode of sandwich panel was revealed as well. Delamination and low fiber to matrix adhesion caused by the degradation of the matrix properties were found for the specimens exposed to 300 °C. The modulus and strength of sandwich panels at different thermal exposure temperatures and times were predicted with proposed method and compared with measured results. Experimental results showed that the predicted values were close to experimental values.  相似文献   

8.
The present work aims at characterizing a metal matrix syntactic foam core sandwich composite under three-point bending conditions. The sandwich comprises alumina hollow particle reinforced A356 alloy syntactic foam with carbon fabric skins. Crack initiation in the tensile side of the specimen causing failure of the skin, followed by rapid failure of the core in the direction applied load, is observed as the failure mechanism. Crack propagation through the alumina particles is observed in the failed specimens instead of interfacial failure. The average maximum strength, flexural strain and stiffness were measured as 91.2 ± 5.6 MPa, 0.49 ± 0.06% and 20.6 ± 0.7 GPa respectively. The collapse load is theoretically predicted using mechanics of sandwich beams. Experimental values show good agreement with theoretical predictions.  相似文献   

9.
《Composites Part B》2007,38(5-6):535-546
The behavior of reinforced concrete panels, or slabs, retrofitted with glass fiber reinforced polymer (GFRP) composite, and subjected to blast load is investigated. Eight 1000 × 1000 × 70 mm panels were made of 40 MPa concrete and reinforced with top and bottom steel meshes. Five of the panels were used as control while the remaining four were retrofitted with adhesively bonded 500 mm wide GFRP laminate strips on both faces, one in each direction parallel to the panel edges. The panels were subjected to blast loads generated by the detonation of either 22.4 kg or 33.4 kg ANFO explosive charge located at a 3-m standoff. Blast wave characteristics, including incident and reflected pressures and impulses, as well as panel central deflection and strain in steel and on concrete/FRP surfaces were measured. The post-blast damage and mode of failure of each panel was observed, and those panels that were not completely damaged by the blast were subsequently statically tested to find their residual strength. It was determined that overall the GFRP retrofitted panels performed better than the companion control panels while one retrofitted panel experienced severe damage and could not be tested statically after the blast. The latter finding is consistent with previous reports which have shown that at relatively close range the blast pressure due to nominally similar charges and standoff distance can vary significantly, thus producing different levels of damage.  相似文献   

10.
This paper describes compressive tests on foam-filled composite egg-box panels which were carried out to assess their performance as energy absorbers. Material type, number of plies and stacking angle were varied. Stacking sequences of CFRP [0]nT, CFRP [45]nT (n = 3, 4) and GFRP [0/90]S, [±45]S were used for foam-filled egg-box cores. Fracture modes of representative composite egg-box cores without foam, including crack initiation and propagation, were observed and analysed by multiply-interrupted compressive tests using transparent acrylic face plates on both sides of the egg-box core. The concept of premature buckling of the foam-filled egg-box panels is used to explain the small initial stress peak. Finally, the collapse curve of the core was used to estimate energy absorption capacity. It was found that the foam-filled composite egg-box sandwich panels had a good energy absorption capacity with a stable collapse response resembling the ideal energy absorber.  相似文献   

11.
《Composites Part A》2007,38(6):1483-1492
This study explored a novel hybrid syntactic foam for composite sandwich structures. A unique microstructure was designed and realized. The hybrid foam was fabricated by dispersing styrene–butadiene rubber latex coated glass microballoons into a nanoclay and milled glass fiber reinforced epoxy matrix. The manufacturing process for developing this unique microstructure was developed. A total of seven groups of beam specimens with varying compositions were prepared. Each group contained 12 identical specimens with dimensions 304.8 mm × 50.8 mm × 15.2 mm. The total number of specimens was 84. Among them, 42 beams were pure foam core specimens and the remaining 42 beams were sandwich specimens with each foam core wrapped by two layers of E-glass plain woven fabric reinforced epoxy skin. Both low velocity impact tests and four-point bending tests were conducted on the foam cores and sandwich beams. Compared with the control specimens, the test results showed that the rubberized syntactic foams were able to absorb a considerably higher amount of impact energy with an insignificant sacrifice in strength. This multi-phase material contained structures bridging over several length-scales. SEM pictures showed that several mechanisms were activated to collaboratively absorb impact energy, including microballoon crushing, interfacial debonding, matrix microcracking, and fiber pull-out; the rubber layer and the microfibers prevented the microcracks from propagating into macroscopic damage by means of rubber pinning and fiber bridge-over mechanisms. The micro-length scale damage insured that the sandwich beams retained the majority of their strength after the impact.  相似文献   

12.
An experimental study of the in-plane compressive failure mechanism of foam cored sandwich specimens with an implanted through-width face/core debond is presented. Tests were conducted on sandwich specimens with glass/vinylester and carbon/epoxy face sheets over various PVC foam cores. Observation of the response of the specimens during testing showed that failure occurred by buckling of the debonded face sheet, followed by rapid debond growth towards the ends of the specimen. The compression strength of the sandwich specimens containing a debond decreased quite substantially with increasing debond size. A high-density core resulted in less strength decrease at any given debond size. Examination of the failure surfaces after separation of the face sheet and core revealed traces of core material deposited on the face sheet evidencing cohesive core failure. The amount of core material adhered to the face sheet decreased with increasing foam density indicating increasing tendency for core/resin interfacial failure.  相似文献   

13.
《Composite Structures》2012,94(1):102-113
A light-weight hot pad system for curing large area adhesive films for the secondary barrier of cryogenic cargo containments of Liquefied Natural Gas (LNG) has been developed with a composite sandwich panel.In order to apply uniform pressure to the adhesive on unlevel insulation panels and to obtain an adequate adhesive thickness, a flexible stainless steel foil heater supported by a butyl rubber air pressure bag has been utilized for the lower part of the hot pad system, and a temperature controller provides reliable curing of the adhesive. To decrease the weight of the hot pad system and mitigate heat loss through the pad, the upper part of the hot pad system has been built with a composite sandwich panel composed of glass fiber epoxy composite face, polystyrene (PS) and polyvinyl chloride (PVC) foam cores with low thermal conductivity.Through finite element analysis and experimentation on hot pad systems, a light-weight hot pad system that is able to cure a 0.3 m by 3.5 m area has been developed with an autoclave cure quality.  相似文献   

14.
This work evaluated the possibility of using silicon solar cells as load-carrying elements in composite sandwich structures. Such an ultra-light multifunctional structure is a new concept enabling weight, and thus energy, to be saved in high-tech applications such as solar cars, solar planes or satellites. Composite sandwich structures with a weight of ~800 g/m2 were developed, based on one 140 μm thick skin made of 0/90° carbon fiber-reinforced plastic (CFRP), one skin made of 130 μm thick mono-crystalline silicon solar cells, thin stress transfer ribbons between the cells, and a 29 kg/m3 honeycomb core. Particular attention was paid to investigating the strength of the solar cells under bending and tensile loads, and studying the influence of sandwich processing on their failure statistics. Two prototype multi-cell modules were produced to validate the concept. The asymmetric sandwich structure showed balanced mechanical strength; i.e. the solar cells, reinforcing ribbons, and 0/90° CFRP skin were each of comparable strength, thus confirming the potential of this concept for producing stiff and ultra-lightweight solar panels.  相似文献   

15.
ZrO2 ceramic corrugated core sandwich panels were fabricated using gelcasting technique and pressureless sintering. The nominal density of the as-prepared ZrO2 ceramic corrugated panel was only 2.4 g/cm3 (42.9% of bulk ceramic). Lightweight was realized through this sandwich structured design. The three-point bending strength was measured to be 298.4 MPa. And the specific bending strength was as high as 124.3 (114% higher than bulk ceramic). The compressive strength was 20.2 MPa. High strength was also realized through this sandwich structured design. The stress distribution during three-point bending and compression testing was finally simulated using finite element analysis (FEA) method.  相似文献   

16.
《Composites Part B》2013,45(1):152-166
Experimental investigation of Fibre Reinforced Polymer (FRP) confined concrete is normally conducted on relatively small-scale specimens, where the scaling effects of the specimen size are usually ignored. Few researchers investigated the scaling effects of confined concrete with Carbon FRP (CFRP), Glass FRP (GFRP) and Aramid FRP (AFRP) sheets. However, based on the authors’ knowledge, there is no information available in the literature on the slenderness effects of confined concrete with Steel FRP (SFRP) sheet. The SFRP sheet is a new type of material recently introduced for strengthening applications of concrete structures. Thus, the main aim of this investigation is to quantify and access the axial strength, axial strain, hoop strain, dilation and ductility performance of SFRP confined concrete with the increase in the slenderness of the specimens. The experimental program included eighteen specimens with varying slenderness ratios (height-to-diameter ratio) of 2 (150 mm × 300 mm), 4 (150 mm × 600 mm), and 6 (150 mm × 900 mm). Six specimens were constructed in each size, where three specimens were left unwrapped as control specimens and three specimens were wrapped with SFRP sheets. All specimens were loaded in uniaxial compression until failure. The specimens were also instrumented with a photogrammetric method termed Digital Image Correlation Technique to measure the hoop strains from the surface of the SFRP confined concrete specimens. The experimental investigation showed that the effectiveness of the SFRP sheets, measured in terms of the percentage increase in the ultimate axial strength, axial and hoop strains, and the ductility was significantly enhanced compared to the unwrapped specimens. The results also indicate that the overall performance of the SFRP wrapped concrete specimens was reduced with the increase in the slenderness of the specimens, when compared to the standard size cylinders. The study of three major design codes/guidelines to predict the ultimate SFRP-confined concrete compressive strength revealed that the FRP Building Code has the best confinement model when compared with the experimental results.  相似文献   

17.
The response of aluminium foam-cored sandwich panels to localised contact loading was investigated experimentally and numerically using flat-ended cylindrical punch of four varying sizes. ALPORAS and ALULIGHT closed-cell foams of 15 mm thickness with 0.3 mm thick aluminium face sheets (of 236 MPa yield strength) were used to manufacture the sandwich panels. Face sheet fracturing at the perimeter of the indenter, in addition to foam cells collapse beneath the indenter and tearing of the cell walls at the perimeter of the indenter were the major failure mechanisms of the sandwich panels, irrespective of the strength and density of the underlying foam core. The authors employed a 3D model in ABAQUS/Explicit to evaluate the indentation event, the skin failure of the face sheets and carry out a sensitivity study of the panel's response. Using the foam model of Deshpande and Fleck combined with the forming limit diagram (FLD) of the aluminium face sheet, good quantitative and qualitative correlations between experiments and simulations were achieved. The higher plastic compliance of the ALPORAS led to increased bending of the sheet metal and delayed the onset of sheet necking and failure. ALULIGHT-cored panels exhibited higher load bearing and energy absorption capacity, compared with ALPORAS cores, due to their higher foam and cell densities and higher yield strength of the cell walls. Additionally, they exhibited greater propensity for strain hardening as evidenced by mechanical testing and the neutron diffraction measurements, which demonstrated the development of macroscopically measurable stresses at higher strains. At these conditions the ALULIGHT response upon compaction becomes akin to the response of bulk material with measurable elastic modulus and evident Poisson effect.  相似文献   

18.
Face/core fatigue crack growth in foam-cored sandwich composites is examined using the mixed mode bending (MMB) test method. The mixed mode loading at the debond crack tip is controlled by changing the load application point in the MMB test fixture. Sandwich specimens were manufactured using H45 and H100 PVC foam cores and E-glass/polyester face sheets. All specimens were pre-cracked in order to define a sharp crack front. The static debond fracture toughness for each material configuration was measured at different mode-mixity phase angles. Fatigue tests were performed at 80% of the static critical load, at load ratios of R = 0.1 and 0.2. The crack length was determined during fatigue testing using the analytical compliance expression and verified by visual measurements. Fatigue crack growth results revealed higher crack growth rates for mode I dominated loading. For specimens with H45 core, the crack grew just below the face/core interface on the core side for all mode-mixities, whereas for specimens with H100 core, the crack propagated in the core or in the face laminate depending on the mode-mixity at the debond crack tip.  相似文献   

19.
Eco-Core is a class of syntactic foam made from small volume of high char yield binder and large volume of a class of flyash for fire resistance application. Very little or no flexural fatigue data of this class of core material is reported in the open literature. This paper presents a flexural fatigue response of Eco-Core in a glass/vinyl ester composite face sheet sandwich beam. A four-point loaded flexural test specimen was designed and tested in static and fatigue loadings to cause tension failure in the core. The fatigue test was conducted at maximum cyclic stress (σmax) ranged from 0.7σct to 0.9σct, where σct is the static flexural strength of the core. The sinusoidal loading frequency of 2 Hz with the stress ratio of 0.1 was used. Flexural fatigue failure modes of Eco-Core sandwich beam were classified: damage onset (single tension crack), damage progression (multiple tension cracks) and ultimate failure (a combination of tension and shear). These failures were characterized by 1%, 5% and 7% changes in compliance that corresponds to N1%, N5% and N7% lives. The fatigue stress-life (S–N) relationship was found to follow the well-known power law equation, σmax/σct = AoNα. The constants Ao and α were established for all three types of failures. The endurance limit was established based on 1 million cycles limit and it was found to be 0.65σct, 0.70σct and 0.71σct, respectively for the three modes of failure. Flexural fatigue and static failure modes of Eco-Core sandwich beams were similar.  相似文献   

20.
The majority of our bridges were constructed with conventional civil engineering materials of steel and concrete in a typical slab on girder or truss construction. Reinforced concrete bridge decks have approximately 40% life of the steel girders that support these structures. In order to support the use of alternative materials to replace deteriorating concrete decks, this paper outlines the Load and Resistance Factor Design (LRFD) of Fiber Reinforced Polymer composite (FRP) panel highway bridge deck. The deck would be of a sandwich construction where 152.4 mm × 152.4 mm × 9.5 mm square pultruded glass FRP (GFRP) tubes are joined and sandwiched between two 9.5 mm GFRP plates. The deck would be designed by Allowable Stress Design (ASD) and LRFD to support AASHTO design truckload HL-93. There are currently no US standards and specifications for the design of FRP pultruded shapes including a deck panel therefore international codes and references related to FRP profiles will be examined and AASHTO-LRFD specifications will be used as the basis for the final design. Overall, years of research and laboratory and field tests have proven FRP decks to be a viable alternative to conventional concrete deck. Therefore, conceptualizing the design of FRP bridge decks using basic structural analysis and mechanics would increase awareness and engineering confidence in the use of this innovative material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号