首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李想  谢宗蕻 《复合材料学报》2018,35(12):3377-3385
螺接修理在复合材料结构的临时性修理,尤其是战伤修理中应用较广泛。然而其修理设计过程较复杂,建模分析难度较大,难以满足工程快速定参的需要。本文针对含穿透损伤复合材料层合板的螺接修理问题,采用VB.NET结合p型有限元技术,开发了一套参数化的建模分析工具。分析工具通过界面读取修理结构的几何参数、螺栓布局、螺栓大小、载荷、材料属性等参数,自动创建有限元模型并进行求解。根据求解结果,分析工具可为用户提供修理结构的螺栓载荷、钉载比例、危险孔孔边应力等。另外,通过引入有限断裂力学,结合两级模型分析技术可预测得到修理结构的失效强度和失效位置。最后,采用典型算例对分析工具的有效性进行了验证。  相似文献   

2.
This paper presents the development and validation of a global bolted joint model (GBJM), a highly efficient modelling strategy for bolted composite joints. Shell elements are used to model the composite laminates and the bolt is represented by a combination of beam elements coupled to rigid contact surfaces. The GBJM can capture effects such as bolt–hole clearance, bolt-torque, friction between laminates, secondary and tertiary bending in the laminates as well as the load distribution in multi-bolt joints. The GBJM is validated using both three-dimensional finite element models and experiments on both single- and multi-bolt joints. The GBJM was found to be robust, accurate and highly efficient, with time savings of up to 97% realised over full three-dimensional finite element models.  相似文献   

3.
This paper presents an experimental and numerical investigation of the mechanical response of bolted joints manufactured using new hybrid composite laminates based on the substitution of CFRP plies with titanium plies. The local hybridization of the material is proposed to increase the efficiency of the bolted joints in CFRP structures. Two modeling strategies, based on non-linear finite element methods, are proposed for the analysis of the bolt-bearing and transition regions of the hybrid laminates. The bolt-bearing region is simulated using a three-dimensional finite element model that predicts ply failure mechanisms, whereas the free-edge of the transition region is simulated using plane stress and cohesive elements. The numerical and experimental results indicate that the use of hybrid composites can drastically increase the strength of CFRP bolted joints and therefore increase the efficiency of this type of connection. In addition, the numerical models proposed are able to predict the failure mechanisms and the strength of hybrid composite laminates with a good accuracy.  相似文献   

4.
Fatigue and rotational self-loosening are two most widespread reasons for failure of dynamically loaded bolted joints, especially due to external loading perpendicular to the bolt axis (transverse loading). More and more component systems show self-loosening in light weight design. The aim of this paper is to provide a numerical design method with finite element analysis for detecting and understanding of the self-loosening process at bolted joints and the influences of the preload generation for the residual shank torque in the numerical simulation.A three-dimensional finite element (FE) model is established to study details of the rotational self-loosening process. Such processes are characterized by either complete or localized slip at the screw head and thread contact surfaces. Detailed information is given about the modelling. The computational results of the numerical simulation are compared with experimental investigations of the cyclic transverse load–displacement behaviour. These show that rotational self-loosening can also occur for only localized slip without complete slipping at the head contact surface.  相似文献   

5.
采用真空辅助成型工艺(VARI)制备了四种局部增强的复合材料层合板螺栓连接试件,通过试验及数值模拟对其力学性能进行了研究。数值研究中将复合材料层合板连接件的拉伸作为一个准静态问题,运用ABAQUS的显示分析算法及所编写用户材料子程序VUMAT对连接件进行了三维渐进失效模拟,同时在有限元模型中采用内聚力单元模拟了层合板与所设增强层的界面分层失效。数值计算结果与试验结果取得了较好的一致,验证了本文中数值方法的有效性。研究结果表明,不同的局部增强方案对复合材料螺栓连接性能的影响较大,设置[0/90/0/90]S铺层的内置纤维增强层能显著提高层合板的螺栓连接性能。  相似文献   

6.
This paper presents the development of a highly efficient user-defined finite element for modelling the bolt-load distribution in large-scale composite structures. The method is a combined analytical/numerical approach and is capable of representing the full non-linear load-displacement behaviour of bolted composite joints both up to, and including, joint failure. In the elastic range, the method is generic and is a numerical extension of a closed-form method capable of modelling the load distribution in single-column joints. A semi-empirical approach is used to model failure initiation and energy absorption in the joint and this has been successfully applied in models of single-bolt, single-lap joints. In terms of large-scale applications, the method is validated against an experimental study of complex load distributions in multi-row, multi-column joints. The method is robust, accurate and highly efficient, thus demonstrating its potential as a time/cost saving design tool for the aerospace industry and indeed other industries utilising bolted composite structures.  相似文献   

7.
复合材料构件由于存在制造误差,装配时常常产生间隙,消除间隙的一种基本手段是向其中填充液体垫片。以复合材料单搭接螺栓连接接头为研究对象,设计了拉伸实验,选取一种改进的失效准则与对应的材料退化准则建立了渐进损伤有限元分析(FEA)模型,在此基础上研究了液体垫片对复合材料单搭接接头强度、刚度等力学性能的影响及复合材料孔内损伤演化的过程,此外还研究了液体垫片孔边的应力-应变状态。由实验与有限元结果可以得出:随着液体垫片厚度的增加,接头的拉伸刚度与峰值载荷均有所降低;相同载荷下复合材料孔内损伤加剧,孔内单元产生初始损伤时对应的载荷降低;但液体垫片厚度的增加可以降低垫片孔边的应力与塑性应变峰值,并使其分布更加均匀化,改善液体垫片孔边受力状态。  相似文献   

8.
The optimum bolted joints for hybrid composite materials composed of glass-epoxy and carbon-epoxy under tensile loading were investigated. The design parameters considered for the bolted joints were ply angle, stacking sequence, the ratio of glass-epoxy to carbon-epoxy, the outer diameters of washers and the clamping pressure. As bearing failure was desirable for bolted joints, the geometry of the bolted joint specimen was designed to undergo bearing failure only.

By inspecting the fracture surfaces of the specimens it was found that delamination on the loaded periphery of the holes and extensive damage on the edge region constrained by a washer occurred. To assess the delamination of the hybrid composite materials, three-dimensional stress analysis of the bolted joint was performed using a commercial finite-element software and compared with the experimental results.  相似文献   


9.
A three-dimensional progressive damage model was developed to simulate the damage accumulation and predict the residual strength and final failure mode of bolted composite joints under in-plane tensile loading. The parametric study included stress analysis, failure analysis and material property degradation. Stress analysis of the three-dimensional geometry was performed numerically using the finite element code ANSYS with special attention given to the detailed modelling of the area around the bolt in order to account for all damage modes. Failure analysis and degradation of material properties were implemented using a set of stress-based Hashin-type failure criteria and a set of appropriate degradation rules, respectively. In order to validate the finite element model, a comparison of stress distributions with results from analytical models found in the literature was carried out and good agreement was obtained. A parametric study was performed to examine the effect of bolt position and friction upon damage accumulation and residual strength.  相似文献   

10.
多孔复合材料机械连接件弹性接触内力和应力分析   总被引:1,自引:1,他引:0       下载免费PDF全文
本文用有限元混合法给出了多孔复合材料机械连接件弹性接触内力和应力分析。文中详细讨论了销钉弹性、层合板铺设方式和摩擦对各孔钉载分配及孔边应力的影响,并给出了多孔连接件向单孔连接件简化的条件。   相似文献   

11.
针对中国缺少T800级复合材料螺栓连接设计参数的问题,发展一种综合连续损伤力学(CDM)和工程算法的单剪连接强度估算策略,以替代试验,降低研究周期和成本。在该强度估算策略中,首先建立试件的CDM有限元模型,通过数值模拟得到单剪螺栓连接的设计参数,包括单剪挤压强度修正系数、无缺口层合板拉伸强度和应力集中减缓因子等。随后根据上述参数,建立工程算法,估算复合材料单剪螺栓连接的最终挤压强度。结果表明:通过该策略得到的T800级复合材料螺栓连接设计参数和强度估算结果与试验结果有较好的一致性,说明该强度估算策略的可行性。   相似文献   

12.
为研究钉孔过盈配合情况和紧固件预紧力及二者混合作用对复合材料连接强度的影响及其机制,提出了一种基于试验验证的有限元方法,在有限元模拟结果与两组不同配合复合材料与钛合金单剪双钉连接拉伸试验吻合良好的基础上,进一步模拟6种不同螺栓预紧力和7种不同钉孔配合模式的组合,共42种不同情况的结构承载能力。通过对模拟结果的分析发现:一定的干涉配合值和预紧力虽然可能导致钉孔周围在受载较小时提前出现较小破坏,但在载荷较大时反而可以改善孔周的接触条件,从而减小孔周的纤维破坏范围,并最终提高连接结构的破坏载荷。而且钉孔配合情况和螺栓预紧力对连接结构承载能力会相互影响,即在不同钉孔配合情况下所得到的紧固件预紧力优化值会有所不同,反之亦然。因此在进行复合材料机械连接结构承载能力优化时,必须同时考虑不同参数的影响,才能获得最优的结构设计。  相似文献   

13.
The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.  相似文献   

14.
The overall performance and efficiency of any structure depend on the connections that join their components; as such they constitute the most critical component. This is particularly true for hybrid structures, where joining of components, either between Fibre-Reinforced-Polymers (FRPs) and/or to other materials is mostly achieved by the means of mechanical fasteners or, less commonly, adhesively bonding. Since these two joining methods come from radically different backgrounds, the resulting design procedures are almost incompatible. This paper aims to hand practitioners a unified dimensioning procedure for the two most frequent fastening methods in FRP structures, i.e. bolted and adhesively bonded joints. Relatively simple double-lap joints connecting flat FRP lamellas and complex joints between FRP tubes and lamellas connected by the means of aluminium brackets were experimentally tested. The joints were numerically investigated using three dimensional finite element analyses coupled to a probabilistic post-processing routine for strength prediction, which subsequently was validated against the experimental data. Good agreement between experimental and predicted strength was achieved, which validates the design process and allows generalising for dimensioning of the bolted and bonded joints in FRP structures. The presented approach opens the door for the practical design of a wide variety of joints encountered in FRP structures, thus overcoming a major problem limiting the widespread of composite construction.  相似文献   

15.
This paper presents the development of an analytical model for replicating the through-thickness stiffness of single-bolt, single-lap composite joints subjected to secondary bending. The model is an extension of a spring-based method, where bolts and laminates are represented by a series of springs and masses. The model accounts for extension of the bolt, the stiffness of the clamped region of the joint due to bolt torque, as well as the flexural stiffness and anticlastic curvature within the laminates. In order capture bolt extension and the stiffness of the clamped region, a closed form approach is used. An approximation approach is used to model flexural stiffness and anticlastic curvature within the laminates. The method is validated against detailed three-dimensional finite element models of bolted composite plates and good agreement was obtained. The method is subsequently employed to calibrate the through-thickness stiffness of single-bolt, single-lap joints in highly-efficient numerical models.  相似文献   

16.
This paper presents the development of an enhanced analytical approach for modelling the load distribution in multi-bolt composite joints. The model is a closed-form extension of a spring-based method, where bolts and laminates are represented by a series of springs and masses. The enhancement accounts for static friction effects between the laminates, a primary mechanism of load transfer in highly torqued bolted joints. The method is validated against detailed three-dimensional finite element models and where possible, experimental results. The effect of varying bolt-torque and bolt-hole clearance on the load distribution in a three-bolt, single-lap joint is investigated and the method proves to be robust, accurate and highly efficient. Finally, the method is employed in a parameter study, where increasing bolt torque levels can be used for achieving a more even load distribution in multi-bolt joints.  相似文献   

17.
《Composite Structures》1998,41(2):167-176
A procedure to determine design allowables for bolted joints in laminated composites is discussed in this paper. Approaches to acquire B-basis design allowables from extensive test information at the lamina/laminate level and the results of bolted joint tests with a small sample size were investigated and evaluated. Pin bearing and notched specimen tests and finite element analysis were conducted. The results indicate that these approaches are practical and cost-effective ways for determining the allowables. Further research, particularly with respect to the prediction accuracy, needs to be carried out to obtain a completely satisfactory result.  相似文献   

18.
为研究具有不同构造形式的加强环螺栓连接节点的力学性能,基于圆钢管混凝土柱-钢梁外加强环螺栓连接节点单调加载试验结果,采用合适的混凝土与钢材本构模型,通过ABAQUS建立该类节点的三维精细化有限元分析模型;对比分析试验和模型的受力特征和破坏形式,验证了数值模型的可靠性;与加强环焊接刚接节点对比,通过对不同构造措施下的加强环螺栓连接节点进行数值模拟,分析结果表明:加强环上采用4排螺栓并加设腹板加劲肋和环板加劲肋的加强环螺栓连接节点可达到全焊加强环刚接节点的初始刚度和抗弯承载力。  相似文献   

19.
《Materials Letters》2004,58(27-28):3451-3456
Adhesively bonded lap joints are used extensively in various industries. Some disadvantages like holes, thermal effects occurring in the bolted, welded, riveted, and soldered joints are not in question in adhesively bonded joints. Strong adhesive materials used in bonding have been greatly developed in recent years, and then the properties of lightness, sealing, corrosion resistance, heat and sound isolation, damping, and quickly mounting facility have been highly improved. In this work, effects of various dynamic characteristics in the adhesively bonded joints subjected to dynamic forces are investigated using the finite element method. The investigation is conducted on a three-dimensional model. The finite element model of the joint is obtained using isoparametric three-dimensional elements having eight nodes with three degrees of freedom each. Mesh generation is accomplished automatically in a computer.The joint is modeled as a thin plate clamped from the left side. The in-plane vibration analysis is constructed. First, the natural frequencies and mode shapes are obtained, and then point and transfer receptances are extracted, employing structural damping. It is observed that the damping greatly decreased the resonance amplitudes.  相似文献   

20.
自定义粘接元接触技术在复合材料连接强度分析中的应用   总被引:1,自引:0,他引:1  
为解决复合材料接头强度分析中由于接触造成的收敛困难问题, 自定义了具有特殊本构关系的粘接元用来模拟接触, 该单元只能传递压力而不能传递拉力。自定义的粘接元被置于两接触对之间用来传递接触压力, 从而保证了接触体之间在接触面上的变形协调关系。同时, 建立了复合材料单钉接头的三维累积损伤有限元模型。基于文献中材料性能退化模型, 对纤维及基体压缩破坏的刚度退化模式做了改进, 并利用自定义粘接元接触技术及改进后的刚度退化方法对模型进行了有限元模拟。最后对四组相应试验件进行了试验验证, 试验结果和模拟结果吻合较好, 证明了自定义粘接元接触技术以及文中模型和算法的有效性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号