首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《混凝土》2015,(8)
以基业长青聚醚大单体(BTL-PEG)、丙烯酸(AA)、甲基丙烯磺酸钠(SMAS)和基业长青保坍型功能助剂(HH)为不饱和单体,过硫酸铵(APS)为引发剂,巯基乙酸(TGA)为链转移剂,共聚合成高适应性的聚羧酸保坍剂。研究表明,在n(AA)∶n(HH)∶n(BTL-PEG)=1.5∶2.7∶1,SM AS用量为大单体用量的1%,APS用量为单体总质量的0.6%,TGA用量为单体总量的0.2%,反应温度为50℃,反应时间为3 h的条件下合成的保坍剂在低掺量下有较好的坍落度保持能力,与水泥有较好的适应性,与减水剂复配后效果明显优于单掺。  相似文献   

2.
采用氧化还原引发体系,以异戊烯醇聚氧乙烯醚(TPEG)、丙烯酸(AA)和丙烯腈(AN)为单体,合成了氰基改性聚羧酸减水剂,其最佳合成条件为:n(AA)∶n(TPEG)=4∶1,n(氧化剂)∶n(还原剂)=4∶1,AN对AA的摩尔替代量为7%,巯基乙酸用量为单体总质量分数的0.4%,反应温度为45℃,巯基乙酸和还原剂混合溶液滴加时间为1.5 h,保温时间为2 h。相比于未改性的聚羧酸减水剂(PCA1),改性后的聚羧酸减水剂(PCA2)减水率提高2.2~4.6个百分点,硬化混凝土各龄期强度增长更好。  相似文献   

3.
以二乙烯三胺和顺丁烯二酸酐为原材料经酯化反应制备酰胺亚胺功能单体(AMIDE),将其与异戊烯基聚氧乙烯醚大单体(TPEG)和不饱和酸丙烯酸(AA)共聚合成一种酰胺亚胺型聚羧酸系减水剂(AMIDE-PCE)。考察了TPEG分子、AA、AMIDE、引发剂H_2O_2、还原剂VC和链转移剂用量对产品性能的影响。确定了合成产品最佳的配比为:n(TPEG3000)∶n(AA)∶n(AMIDE)=1.0∶3.5∶1.0,H_2O_2和链转移剂用量分别为单体总质量的1.5%和1.8%,m(VC)∶m(H_2O_2)=0.5∶1.0。与市售聚醚型聚羧酸系减水剂(e-PCE)相比,AMIDE-PCE具有优异的分散性、明显的缓凝和增强效果。  相似文献   

4.
采用水溶液自由基聚合方式,氧化还原引发体系下,以丙烯酸(AA)、异戊烯醇聚氧乙烯醚(TPEG)和天门冬氨酸丙烯酯(AASP)为单体,合成了氨基酸酯改性的聚羧酸高性能减水剂。研究表明:当n(AA)∶n(TPEG+AASP)=3.5∶1,AASP用量为单体质量的9%,引发剂用量为单体总质量的2%,巯基丙酸用量为单体总质量的0.4%,反应温度为40℃,反应时间为4.5 h的条件下合成的聚羧酸减水剂效果最好。相比于未改性的聚羧酸减水剂,减水率提高2~4个百分点,保坍效果显著增强。  相似文献   

5.
夏季混凝土施工和大体积混凝土需要较长的凝结时间。研究了以不同分子质量的大单体烯丙基聚氧乙烯醚(APEG)、丙烯酸(AA)、顺丁烯二酸(MA)和缓凝型单体(GA)合成缓凝型聚羧酸系减水剂,确定了合成产品的最佳工艺条件为:n(APEG1200)∶n(AA)∶n(MA)∶n(GA)=1.0∶0.5∶2.0∶0.5;采用引发剂过硫酸铵[(NH4)2S2O8]用量为单体总质量的2.0%。与市场上的同类产品相比,合成的缓凝型聚羧酸系减水剂具有明显的缓凝作用。  相似文献   

6.
本文采用甲基烯丙基聚氧乙烯醚(TPEG)、丙烯酸(AA)为单体,在引发剂作用下,较低温度(40~45℃)直接聚合得到一种高减水型聚羧酸减水剂。研究发现最佳工艺条件为:n(AA)∶n(TPEG)=4.5∶1,链转移剂为单体总质量的0.6%,引发剂Vc为单体总质量的0.5%(双氧水30%,0.39%)。使用合成样品进行混凝土减水率测定及FT-IR、GPC等结构表征。该合成样品具有减水率高(33.56%)、反应转化率高、保坍性好等优点。  相似文献   

7.
《混凝土》2016,(9)
直接采用固体合成的方法制备了一种聚羧酸系减水剂,通过对比试验研究了不同单体摩尔比及合成工艺对对产物水泥净浆流动度的影响,从而确定最佳合成条件为:单体摩尔比为n(AA)∶n(708)∶n(MAS)∶n(AM)=3.6∶1∶0.4∶0.3,复合引发剂用量为0.6%APS+0.2%V50(占单体的质量百分比),链转移剂TGB用量为单体总质量的0.5%,反应温度为65℃,反应时间为3 h。通过水泥净浆流动度、储存稳定性及混凝土试验表明,所制备的减水剂具有良好的储存稳定性及减水效果,减水率高于市场同类产品,而且便于储存,运输方便且成本大大降低。  相似文献   

8.
采用丙烯酸羟乙酯与酒石酸进行酯化,将酯化产物(M)与丙烯酸(AA)、甲基烯丙基聚氧乙烯醚(TPEG)、2-丙烯酰胺-2-甲基丙烷磺酸(AMPS)在引发剂过硫酸铵作用下进行共聚,合成了一种缓释型聚羧酸系减水剂。探讨了单体摩尔比、催化剂用量、酯化温度、带水剂等因素对酯化反应的影响,考察了酯化产物M对丙烯酸AA替代量对水泥净浆流动性的影响。结果表明:酯化反应的最佳条件为:n(酒石酸)∶n(丙烯酸羟乙酯)=1∶5,酯化温度85℃,催化剂对甲苯磺酸掺量3%,带水剂环己烷用量为反应物总质量的40%;将合成的酯化产物M部分替代AA进行减水剂的合成,最佳单体比例为:n(AA)∶n(TPEG)∶n(AMPS)∶n(酯化产物M)=1.25∶1.00∶0.27∶2.00;当合成的聚羧酸减水剂掺量为0.3%时,水泥净浆初始流动度为245.0 mm、1 h流动度为207.5 mm、2 h流动度为225.0 mm,制备的聚羧酸减水剂具有良好的缓释功能。  相似文献   

9.
常温合成烯丙基聚氧乙烯醚型聚羧酸减水剂研究   总被引:1,自引:0,他引:1  
按照正交试验的方法,利用双氧水-连二亚硫酸钠(SD)氧化还原引发体系,以烯丙基聚氧乙烯醚(APEG)、马来酸酐(MA)、丙烯酰胺(AM)及丙烯酸(AA)为原料,进行自由基聚合,制备醚类聚羧酸系高性能减水剂.研究结果表明:最佳聚合工艺参数为:反应的最优配合比n(MA)∶n(APEG)∶n(AM)∶n(AA)=1.6∶1.5∶1.5∶4.0.其中,SD用量为单体总质量的百分比4.0%,双氧水(30%)用量为单体总质量的4.0%.使用合成的样品进行了水泥净浆、水泥砂浆和混凝土试验.该合成样品具有掺量低、减水率高、水泥适应性广、保坍性好、增强效果好等突出优点.  相似文献   

10.
采用高活性聚醚大单体异丁烯基聚乙二醇醚(HPEG)与丙烯酸、不饱和单体,在复合高效引发体系下进行自由基聚合,引入功能性单体N-(3-二甲氨基丙基)甲基丙烯酰胺(DAP),合成了一种功能化预制构件专用聚羧酸超塑化剂(PCE-1)。并研究了大单体分子质量、功能单体种类和用量、引发体系和用量对其性能的影响。结果表明,PCE-1的最佳制备工艺为:m(HPEG6000)∶m(AA)∶m(HP)∶m(TGA)=100∶10∶1.2∶0.5,DAP、还原剂P1用量分别为大单体质量的1.5%、0.3%。混凝土试验结果表明,PCE-1具有较好的综合性能,其早强性优于国内外同类产品,适用于预制构件的生产,且其抗压强度能满足施工要求。  相似文献   

11.
以2-丙烯酰氧基-1,2,3-三羧基丙烷(ACP)、丙烯酸(AA)、丙烯酸聚乙二醇单甲醚酯(MPA)和甲基丙烯磺酸钠(MAS)为单体,过硫酸铵(APS)为引发剂,采用水溶液共聚法合成柠檬酸改性四元聚羧酸系减水剂。实验结果表明,改性聚羧酸减水剂的最优合成条件为:反应温度90℃,反应时间5 h,APS用量为单体总质量的2.5%,在单体配比为n(ACP)∶n(AA)∶n(MPA)∶n(MAS)=0.47∶3.5∶1.2∶1.0,所合成减水剂的减水率高达31%,2 h内水泥净浆流动度基本无损失。  相似文献   

12.
采用异戊烯醇聚氧乙烯醚(TPEG),与马来酸酐(MA)、马来酸单甲酯(AMA)、丙烯酰胺(AM)及丙烯酸(AA)等原料进行聚合反应,制备了一种保坍型聚羧酸系减水剂。研究了单体配比、反应温度、引发剂用量、链转移剂用量对合成减水剂性能的影响。保坍型聚羧酸系减水剂的最佳合成工艺为:单体配比n(TPEG)∶n(AMA)∶n(MA)∶n(AM)∶n(AA)=1∶1∶2∶1∶1,反应温度为45℃,引发剂和链转移剂用量分别为单体总物质的量的6%和1.75%,所合成的保坍型聚羧酸系减水剂具有较好的保坍性,对不同的水泥具有较好的适应性。  相似文献   

13.
以在常温下合成具有理想分子结构和良好分散性能的高固含量聚羧酸高性能减水剂为目的,依据自由基聚合原理和分子设计理论,采用丙烯酸和改性聚醚大单体甲基烯丙基聚氧乙烯醚(TPEG2400)为主要原料,在水溶液中通过简单二元共聚,常温合成了一种固含量60%的甲基烯丙基聚氧乙烯醚型减水剂。结果表明,最佳合成工艺为:10~30℃下反应4.5 h,n(TPEG)∶n(AA)=4.0∶1.0,双氧水(30%)、酒石酸用量均为单体总质量的1.0%。制备的减水剂具有固含量高、掺量低、分散性好、混凝土减水率高、保坍性好等特点。此合成方法可减少蒸汽用量,节约能源,降低生产成本。  相似文献   

14.
选用氧化还原引发剂体系合成聚羧酸减水剂,着重对引发剂组成及用量以及引发剂久置性等对减水剂性能的影响进行研究。结果表明,当引发剂中还原性物质组成为m(Vc)∶m(Na HSO3)=1∶1,氧化剂用量为HPEG质量的0.5%,体系中引发剂用量为HPEG总质量的2%,n(HPEG)∶n(AA)∶n(AMPS)=1.0∶3.5∶0.7时,合成减水剂的分子质量MW为25 820 g/mol。经XRD分析表明,减水剂有促进水泥早期水化的作用。减水剂掺量为0.25%时,混凝土减水率达35%。  相似文献   

15.
以丙烯酸、501醚类单体和缓释单体A为主要原料,在本体聚合条件下,采用偶氮二异丁腈(AIBN)为引发剂合成一种固态缓释型聚羧酸减水剂。研究了温度、酸醚比、引发剂和链转移剂用量对减水剂性能的影响并分析了原因。结果表明,当反应温度为70℃,引发剂用量为大单体质量的0.5%,链转移剂用量为大单体质量的0.4%,n(TPEG)∶n(AA)∶n(缓释单体A)=1.0∶3.5∶2.5时,所制备的固态缓释型聚羧酸减水剂性能最佳,其性能与市售缓释型减水剂B相当。GPC分析结果表明,合成产物中大单体转化率高,产物均一。  相似文献   

16.
以乙醇胺与磷酸进行酯化反应制得乙醇胺磷酸酯,再与马来酸酐进行开环反应制得磷酸酯改性单体MA-POE,并进一步与丙烯酸(AA)及异戊烯基聚氧乙烯醚(TPEG)进行水溶液自由基共聚合成磷酸酯基团改性聚羧酸减水剂。考察了AA、磷酸酯单体及TPEG三者比例、引发剂用量、催化剂用量等对减水剂分散性的影响,并与市售普通聚羧酸减水剂的抗高岭土性能进行了对比。结果表明,当n(AA)∶n(磷酸单体)∶n(TPEG)=4∶1∶1,双氧水用量为单体总物质的量的4%,n(抗坏血酸)∶n(双氧水)=0.50时,合成的减水剂分散及分散保持性能较优,对高岭土的敏感性优于市售减水剂,这主要源于其对高岭土的吸附作用更小。  相似文献   

17.
以异戊烯醇聚氧乙烯醚(TPEG)、丙烯酸(AA)、丙烯酰胺(AM)、二甲基丙烯酸乙二醇酯为主要原料,共聚合成降粘型聚羧酸减水剂PC-2。研究不同侧链长度、丙烯酰胺和二甲基丙烯酸乙二醇酯用量对PC-2性能的影响。结果表明,该减水剂的最佳制备工艺为n(AA)∶n(TPEG-1000)=3.5∶1.0,新型还原剂、丙烯酰胺、二甲基丙烯酸乙二醇酯和3-巯基丙酸用量分别为单体总质量的0.15%、1.5%、2.5%和0.5%,n(H_2O_2)∶n(新型还原剂)=4∶1。经测试验证,PC-2的坍落度保持性和降粘效果都明显优于市售降粘型聚羧酸PC-1。  相似文献   

18.
以常规聚醚单体TPEG、丙烯酸(AA)为主要原料,引入新型不饱和小单体甲基丙烯酰氧乙基琥珀酸单酯(MS),在双氧水(HP)-维生素C(Vc)引发体系下,采用常温自由基溶液聚合反应制备缓释型聚羧酸保坍剂PC-1。研究MS、AA、Vc和巯基丙酸(T1)等用量对PC-1性能的影响,并采用红外光谱对合成的PC-1进行结构表征。结果表明,PC-1具有预期的化学结构,PC-1的最佳制备工艺为:m(TPEG)∶m(AA)∶m(MS)=100∶5∶6,Vc、T1用量分别为大单体质量的0.2%、1.0%。掺PC-1的C30混凝土初始和60、120、180 min坍落度保持性均明显优于同类聚羧酸保坍剂。  相似文献   

19.
木质素磺酸盐改性聚羧酸减水剂的合成   总被引:1,自引:0,他引:1  
采用自由基共聚法,将大单体聚乙二醇单甲醚甲基丙烯酸酯(MPA)、木质素磺酸钠(LS)、丙烯酸(AA)和甲基丙烯磺酸钠(MAS)4种单体进行共聚,合成木质素磺酸盐改性聚羧酸减水剂。在n(AA)∶n(MPA)∶n(MAS)=5.0∶1.0∶1.0,引发剂用量为2.5%,LS用量为9%,反应温度80℃和反应时间为5 h的条件下合成的减水剂,掺量为0.2%、水灰比为0.29时,掺减水剂水泥净浆初始流动度达290 mm、30 min经时流动度为285 mm,流动度保持性良好。减水剂PC-LS掺量为0.4%时,砂浆的减水率达30%。  相似文献   

20.
以马来酸酐(MA)与聚乙二醇(PEG)酯化生成马来酸聚乙二醇酯大分子单体(PEM),再与甲基丙烯磺酸钠(MAS)和丙烯酸(AA)在过硫酸铵的引发下共聚得到聚羧酸系减水剂.研究了MA与PEG的摩尔比,催化剂对甲苯磺酸(SMS)用量,反应温度、反应时间对酯化率的影响.利用正交试验优化了共聚反应原料摩尔比,引发剂用量,反应温度、反应时间等工艺参数.结果表明,增大MA与PEG摩尔比,提高催化剂用量,提高反应温度或延长反应时间都可以提高酯化率.最佳反应条件为:n(PEM)∶n(AA)∶n(MAS)=1∶3∶1,n (MA)∶n (PEG) =3∶1,催化剂对甲苯磺酸用量为马来酸酐的3%,引发剂过硫酸铵用量为甲基丙烯磺酸钠、马来酸酐聚乙二醇酯和丙烯酸总质量的3%,反应温度为85℃,反应时间为5h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号